Natural transformations between functors between large categories
Content created by Egbert Rijke and Fredrik Bakke.
Created on 2023-10-17.
Last modified on 2023-11-24.
module category-theory.natural-transformations-functors-large-categories where
Imports
open import category-theory.functors-large-categories open import category-theory.large-categories open import category-theory.natural-transformations-functors-large-precategories open import foundation.universe-levels
Idea
Given large categories C
and D
, a
natural transformation from a
functor F : C → D
to
G : C → D
consists of :
- a family of morphisms
γ : (x : C) → hom (F x) (G x)
such that the following naturality condition holds: (G f) ∘ (γ x) = (γ y) ∘ (F f)
, for allf : hom x y
.
Definition
module _ {αC αD γF γG : Level → Level} {βC βD : Level → Level → Level} (C : Large-Category αC βC) (D : Large-Category αD βD) (F : functor-Large-Category γF C D) (G : functor-Large-Category γG C D) where family-of-morphisms-functor-Large-Category : UUω family-of-morphisms-functor-Large-Category = family-of-morphisms-functor-Large-Precategory ( large-precategory-Large-Category C) ( large-precategory-Large-Category D) ( F) ( G) naturality-family-of-morphisms-functor-Large-Category : family-of-morphisms-functor-Large-Category → UUω naturality-family-of-morphisms-functor-Large-Category = naturality-family-of-morphisms-functor-Large-Precategory ( large-precategory-Large-Category C) ( large-precategory-Large-Category D) ( F) ( G) natural-transformation-Large-Category : UUω natural-transformation-Large-Category = natural-transformation-Large-Precategory ( large-precategory-Large-Category C) ( large-precategory-Large-Category D) ( F) ( G) hom-natural-transformation-Large-Category : natural-transformation-Large-Category → family-of-morphisms-functor-Large-Category hom-natural-transformation-Large-Category = hom-natural-transformation-Large-Precategory naturality-natural-transformation-Large-Category : (τ : natural-transformation-Large-Category) → naturality-family-of-morphisms-functor-Large-Category (hom-natural-transformation-Large-Category τ) naturality-natural-transformation-Large-Category = naturality-natural-transformation-Large-Precategory
Properties
The identity natural transformation
Every functor comes equipped with an identity natural transformation.
module _ { αC αD γF : Level → Level} { βC βD : Level → Level → Level} ( C : Large-Category αC βC) ( D : Large-Category αD βD) ( F : functor-Large-Category γF C D) where hom-id-natural-transformation-Large-Category : family-of-morphisms-functor-Large-Category C D F F hom-id-natural-transformation-Large-Category = hom-id-natural-transformation-Large-Precategory ( large-precategory-Large-Category C) ( large-precategory-Large-Category D) ( F) naturality-id-natural-transformation-Large-Category : naturality-family-of-morphisms-functor-Large-Category C D F F hom-id-natural-transformation-Large-Category naturality-id-natural-transformation-Large-Category = naturality-id-natural-transformation-Large-Precategory ( large-precategory-Large-Category C) ( large-precategory-Large-Category D) ( F) id-natural-transformation-Large-Category : natural-transformation-Large-Category C D F F id-natural-transformation-Large-Category = id-natural-transformation-Large-Precategory ( large-precategory-Large-Category C) ( large-precategory-Large-Category D) ( F)
Composition of natural transformations
module _ {αC αD γF γG γH : Level → Level} {βC βD : Level → Level → Level} (C : Large-Category αC βC) (D : Large-Category αD βD) (F : functor-Large-Category γF C D) (G : functor-Large-Category γG C D) (H : functor-Large-Category γH C D) (τ : natural-transformation-Large-Category C D G H) (σ : natural-transformation-Large-Category C D F G) where hom-comp-natural-transformation-Large-Category : family-of-morphisms-functor-Large-Category C D F H hom-comp-natural-transformation-Large-Category = hom-comp-natural-transformation-Large-Precategory ( large-precategory-Large-Category C) ( large-precategory-Large-Category D) ( F) ( G) ( H) ( τ) ( σ) naturality-comp-natural-transformation-Large-Category : naturality-family-of-morphisms-functor-Large-Category C D F H hom-comp-natural-transformation-Large-Category naturality-comp-natural-transformation-Large-Category = naturality-comp-natural-transformation-Large-Precategory ( large-precategory-Large-Category C) ( large-precategory-Large-Category D) ( F) ( G) ( H) ( τ) ( σ) comp-natural-transformation-Large-Category : natural-transformation-Large-Category C D F H comp-natural-transformation-Large-Category = comp-natural-transformation-Large-Precategory ( large-precategory-Large-Category C) ( large-precategory-Large-Category D) ( F) ( G) ( H) ( τ) ( σ)
Recent changes
- 2023-11-24. Egbert Rijke. Refactor precomposition (#937).
- 2023-10-17. Egbert Rijke and Fredrik Bakke. Adjunctions of large categories and some minor refactoring (#854).