Congruences

Content created by Fredrik Bakke, Egbert Rijke, Fernando Chu, Julian KG, fernabnor and louismntnu.

Created on 2023-03-20.
Last modified on 2023-11-24.

module universal-algebra.congruences where
Imports
open import elementary-number-theory.natural-numbers

open import foundation.cartesian-product-types
open import foundation.dependent-pair-types
open import foundation.equivalence-relations
open import foundation.propositions
open import foundation.unit-type
open import foundation.universe-levels

open import linear-algebra.vectors

open import universal-algebra.algebraic-theories
open import universal-algebra.algebras-of-theories
open import universal-algebra.signatures

Idea

A congruence in an algebra is an equivalence relation that respects all operations of the algebra.

Definitions

module _
  { l1 : Level} ( Sg : signature l1)
  { l2 : Level} ( Th : Theory Sg l2)
  { l3 : Level} ( Alg : Algebra Sg Th l3)
  where

  relation-holds-all-vec :
    { l4 : Level} 
    ( R : equivalence-relation l4 (type-Algebra Sg Th Alg)) 
    { n : } 
    ( v : vec (type-Algebra Sg Th Alg) n) 
    ( v' : vec (type-Algebra Sg Th Alg) n) 
    UU l4
  relation-holds-all-vec {l4} R {.zero-ℕ} empty-vec empty-vec = raise-unit l4
  relation-holds-all-vec {l4} R {.(succ-ℕ _)} (x  v) (x'  v') =
    ( type-Prop (prop-equivalence-relation R x x')) ×
    ( relation-holds-all-vec R v v')

  preserves-operations :
    { l4 : Level} 
    ( R : equivalence-relation l4 (type-Algebra Sg Th Alg)) 
    UU (l1  l3  l4)
  preserves-operations R =
    ( op : operation-signature Sg) 
    ( v : vec (type-Algebra Sg Th Alg)
      ( arity-operation-signature Sg op)) 
    ( v' : vec (type-Algebra Sg Th Alg)
      ( arity-operation-signature Sg op)) 
        ( relation-holds-all-vec R v v' 
          ( type-Prop
            ( prop-equivalence-relation R
              ( is-model-set-Algebra Sg Th Alg op v)
              ( is-model-set-Algebra Sg Th Alg op v'))))

  congruence-Algebra :
    ( l4 : Level) 
    UU (l1  l3  lsuc l4)
  congruence-Algebra l4 =
    Σ ( equivalence-relation l4 (type-Algebra Sg Th Alg))
      ( preserves-operations)

  equivalence-relation-congruence-Algebra :
    { l4 : Level} 
    congruence-Algebra l4  ( equivalence-relation l4 (type-Algebra Sg Th Alg))
  equivalence-relation-congruence-Algebra = pr1

  preserves-operations-congruence-Algebra :
    { l4 : Level} 
    ( R : congruence-Algebra l4) 
    ( preserves-operations (equivalence-relation-congruence-Algebra R))
  preserves-operations-congruence-Algebra = pr2

Recent changes