Addition of nonzero real numbers
Content created by Louis Wasserman.
Created on 2025-11-21.
Last modified on 2025-11-21.
{-# OPTIONS --lossy-unification #-} module real-numbers.addition-nonzero-real-numbers where
Imports
open import foundation.dependent-pair-types open import foundation.disjunction open import foundation.functoriality-disjunction open import foundation.universe-levels open import real-numbers.addition-negative-real-numbers open import real-numbers.addition-positive-real-numbers open import real-numbers.addition-real-numbers open import real-numbers.dedekind-real-numbers open import real-numbers.nonzero-real-numbers
Idea
On this page we describe properties of addition of nonzero real numbers.
Properties
If x + y is nonzero, x is nonzero or y is nonzero
abstract is-nonzero-either-is-nonzero-add-ℝ : {l1 l2 : Level} (x : ℝ l1) (y : ℝ l2) → is-nonzero-ℝ (x +ℝ y) → disjunction-type (is-nonzero-ℝ x) (is-nonzero-ℝ y) is-nonzero-either-is-nonzero-add-ℝ x y = elim-disjunction ( is-nonzero-prop-ℝ x ∨ is-nonzero-prop-ℝ y) ( λ x+y<0 → map-disjunction ( inl-disjunction) ( inl-disjunction) ( is-negative-either-is-negative-add-ℝ x y x+y<0)) ( λ 0<x+y → map-disjunction ( inr-disjunction) ( inr-disjunction) ( is-positive-either-is-positive-add-ℝ x y 0<x+y))
Recent changes
- 2025-11-21. Louis Wasserman. Vector spaces (#1689).