Ideals in preorders
Content created by Jonathan Prieto-Cubides, Egbert Rijke and Fredrik Bakke.
Created on 2022-08-09.
Last modified on 2023-05-07.
module order-theory.ideals-preorders where
Imports
open import foundation.cartesian-product-types open import foundation.dependent-pair-types open import foundation.inhabited-types open import foundation.universe-levels open import order-theory.lower-types-preorders open import order-theory.preorders
Idea
Ideals in preorders are inhabited lower types L
that contain an upper
bound for every pair of elements in L
.
Definition
module _ {l1 l2 : Level} (P : Preorder l1 l2) where is-ideal-lower-type-Preorder : {l3 : Level} (L : lower-type-Preorder l3 P) → UU (l1 ⊔ l2 ⊔ l3) is-ideal-lower-type-Preorder L = ( is-inhabited (type-lower-type-Preorder P L)) × ( (x y : type-lower-type-Preorder P L) → is-inhabited ( Σ ( type-lower-type-Preorder P L) ( λ z → ( leq-lower-type-Preorder P L x z) × ( leq-lower-type-Preorder P L y z))))
Recent changes
- 2023-05-07. Egbert Rijke. Cleaning up order theory some more (#599).
- 2023-05-05. Egbert Rijke. Cleaning up order theory 3 (#593).
- 2023-03-13. Jonathan Prieto-Cubides. More maintenance (#506).
- 2023-03-10. Fredrik Bakke. Additions to
fix-import
(#497). - 2023-03-09. Jonathan Prieto-Cubides. Add hooks (#495).