Premanifolds
Content created by Egbert Rijke and Fredrik Bakke.
Created on 2023-10-17.
Last modified on 2024-01-09.
module synthetic-homotopy-theory.premanifolds where
Imports
open import elementary-number-theory.natural-numbers open import foundation.commuting-squares-of-maps open import foundation.dependent-pair-types open import foundation.mere-equivalences open import foundation.unit-type open import foundation.universe-levels open import synthetic-homotopy-theory.cocones-under-spans open import synthetic-homotopy-theory.mere-spheres open import synthetic-homotopy-theory.pushouts open import synthetic-homotopy-theory.spheres open import synthetic-homotopy-theory.tangent-spheres
Idea
An n
-dimensional premanifold is a type M
such that every element x : M
comes equipped with a
tangent n
-sphere.
Definitions
Premanifolds
Premanifold : (l : Level) (n : ℕ) → UU (lsuc l) Premanifold l n = Σ (UU l) (λ M → (x : M) → has-tangent-sphere n x) module _ {l : Level} (n : ℕ) (M : Premanifold l n) where type-Premanifold : UU l type-Premanifold = pr1 M tangent-sphere-Premanifold : (x : type-Premanifold) → mere-sphere lzero n tangent-sphere-Premanifold x = tangent-sphere-has-tangent-sphere n (pr2 M x) type-tangent-sphere-Premanifold : (x : type-Premanifold) → UU lzero type-tangent-sphere-Premanifold x = type-tangent-sphere-has-tangent-sphere n (pr2 M x) mere-equiv-tangent-sphere-Premanifold : (x : type-Premanifold) → mere-equiv (sphere n) (type-tangent-sphere-Premanifold x) mere-equiv-tangent-sphere-Premanifold x = mere-equiv-tangent-sphere-has-tangent-sphere n (pr2 M x) complement-Premanifold : (x : type-Premanifold) → UU l complement-Premanifold x = complement-has-tangent-sphere n (pr2 M x) inclusion-tangent-sphere-Premanifold : (x : type-Premanifold) → type-tangent-sphere-Premanifold x → complement-Premanifold x inclusion-tangent-sphere-Premanifold x = inclusion-tangent-sphere-has-tangent-sphere n (pr2 M x) inclusion-complement-Premanifold : (x : type-Premanifold) → complement-Premanifold x → type-Premanifold inclusion-complement-Premanifold x = inclusion-complement-has-tangent-sphere n (pr2 M x) coherence-square-Premanifold : (x : type-Premanifold) → coherence-square-maps ( inclusion-tangent-sphere-Premanifold x) ( terminal-map (type-tangent-sphere-Premanifold x)) ( inclusion-complement-Premanifold x) ( point x) coherence-square-Premanifold x = coherence-square-has-tangent-sphere n (pr2 M x) cocone-Premanifold : (x : type-Premanifold) → cocone ( terminal-map (type-tangent-sphere-Premanifold x)) ( inclusion-tangent-sphere-Premanifold x) ( type-Premanifold) cocone-Premanifold x = cocone-has-tangent-sphere n (pr2 M x) is-pushout-Premanifold : (x : type-Premanifold) → is-pushout ( terminal-map (type-tangent-sphere-Premanifold x)) ( inclusion-tangent-sphere-Premanifold x) ( cocone-Premanifold x) is-pushout-Premanifold x = is-pushout-has-tangent-sphere n (pr2 M x)
Recent changes
- 2024-01-09. Fredrik Bakke. Make type argument explicit for
terminal-map
(#993). - 2023-10-17. Egbert Rijke. Tangent spheres (#853).