Torsion elements of groups
Content created by Egbert Rijke and Fredrik Bakke.
Created on 2023-10-06.
Last modified on 2024-04-11.
module group-theory.torsion-elements-groups where
Imports
open import elementary-number-theory.integers open import elementary-number-theory.nonzero-integers open import foundation.dependent-pair-types open import foundation.existential-quantification open import foundation.identity-types open import foundation.propositions open import foundation.subtypes open import foundation.universe-levels open import group-theory.groups open import group-theory.integer-powers-of-elements-groups
Idea
An element x
of a group G
is said to be a
torsion element if
∃ (k : nonzero-ℤ), xᵏ = 1.
Note that the condition of being a torsion element is slightly weaker than the
condition of being of
finite order. The condition
of being a torsion element holds
if and only if the
subgroup order x
of ℤ
contains a
nonzero
integer, while the condition of being of
finite order states that the
subgroup order x
is generated by k
for some nonzero integer k
.
Definition
The predicate of being a torsion element
module _ {l1 : Level} (G : Group l1) (x : type-Group G) where is-torsion-element-prop-Group : Prop l1 is-torsion-element-prop-Group = exists-structure-Prop ( nonzero-ℤ) ( λ k → integer-power-Group G (int-nonzero-ℤ k) x = unit-Group G) is-torsion-element-Group : UU l1 is-torsion-element-Group = type-Prop is-torsion-element-prop-Group is-prop-is-torsion-element-Group : is-prop is-torsion-element-Group is-prop-is-torsion-element-Group = is-prop-type-Prop is-torsion-element-prop-Group
The type of torsion elements of a group
module _ {l1 : Level} (G : Group l1) where torsion-element-Group : UU l1 torsion-element-Group = type-subtype (is-torsion-element-prop-Group G)
Properties
The unit element is a torsion element
module _ {l1 : Level} (G : Group l1) where is-torsion-element-unit-Group : is-torsion-element-Group G (unit-Group G) is-torsion-element-unit-Group = intro-exists ( one-nonzero-ℤ) ( integer-power-unit-Group G one-ℤ) unit-torsion-element-Group : torsion-element-Group G pr1 unit-torsion-element-Group = unit-Group G pr2 unit-torsion-element-Group = is-torsion-element-unit-Group
See also
- Torsion-free groups are defined to be groups of which the only torsion element is the identity element.
- Elements of finite order of groups.
Recent changes
- 2024-04-11. Fredrik Bakke and Egbert Rijke. Propositional operations (#1008).
- 2023-10-06. Egbert Rijke and Fredrik Bakke. Torsion-free groups (#813).