Equivalences between standard finite types
Content created by Fredrik Bakke, Jonathan Prieto-Cubides, Egbert Rijke and Eléonore Mangel.
Created on 2022-02-28.
Last modified on 2024-02-06.
module univalent-combinatorics.equivalences-standard-finite-types where
Imports
open import elementary-number-theory.exponentiation-natural-numbers open import elementary-number-theory.natural-numbers open import foundation.contractible-types open import foundation.equivalences open import foundation.functoriality-cartesian-product-types open import foundation.type-arithmetic-empty-type open import foundation.unit-type open import foundation.universal-property-coproduct-types open import foundation.universal-property-empty-type open import foundation.universal-property-unit-type open import univalent-combinatorics.cartesian-product-types open import univalent-combinatorics.standard-finite-types
Idea
We construct equivalences between (types built out of) standard finite types.
The standard finite types are closed under function types
function-Fin : (k l : ℕ) → (Fin k → Fin l) ≃ Fin (exp-ℕ l k) function-Fin zero-ℕ l = ( inv-left-unit-law-coproduct unit) ∘e ( equiv-is-contr (universal-property-empty' (Fin l)) is-contr-unit) function-Fin (succ-ℕ k) l = ( product-Fin (exp-ℕ l k) l) ∘e ( equiv-product (function-Fin k l) (equiv-universal-property-unit (Fin l))) ∘e ( equiv-universal-property-coproduct (Fin l)) Fin-exp-ℕ : (k l : ℕ) → Fin (exp-ℕ l k) ≃ (Fin k → Fin l) Fin-exp-ℕ k l = inv-equiv (function-Fin k l)
Recent changes
- 2024-02-06. Fredrik Bakke. Rename
(co)prod
to(co)product
(#1017). - 2023-10-16. Fredrik Bakke. The simplex precategory (#845).
- 2023-03-10. Fredrik Bakke. Additions to
fix-import
(#497). - 2023-03-09. Jonathan Prieto-Cubides. Add hooks (#495).
- 2023-03-07. Fredrik Bakke. Add blank lines between
<details>
tags and markdown syntax (#490).