Equivalences between standard finite types

Content created by Fredrik Bakke, Jonathan Prieto-Cubides, Egbert Rijke and Eléonore Mangel.

Created on 2022-02-28.
Last modified on 2024-02-06.

module univalent-combinatorics.equivalences-standard-finite-types where
Imports
open import elementary-number-theory.exponentiation-natural-numbers
open import elementary-number-theory.natural-numbers

open import foundation.contractible-types
open import foundation.equivalences
open import foundation.functoriality-cartesian-product-types
open import foundation.type-arithmetic-empty-type
open import foundation.unit-type
open import foundation.universal-property-coproduct-types
open import foundation.universal-property-empty-type
open import foundation.universal-property-unit-type

open import univalent-combinatorics.cartesian-product-types
open import univalent-combinatorics.standard-finite-types

Idea

We construct equivalences between (types built out of) standard finite types.

The standard finite types are closed under function types

function-Fin :
  (k l : )  (Fin k  Fin l)  Fin (exp-ℕ l k)
function-Fin zero-ℕ l =
  ( inv-left-unit-law-coproduct unit) ∘e
  ( equiv-is-contr (universal-property-empty' (Fin l)) is-contr-unit)
function-Fin (succ-ℕ k) l =
  ( product-Fin (exp-ℕ l k) l) ∘e
  ( equiv-product (function-Fin k l) (equiv-universal-property-unit (Fin l))) ∘e
  ( equiv-universal-property-coproduct (Fin l))

Fin-exp-ℕ : (k l : )  Fin (exp-ℕ l k)  (Fin k  Fin l)
Fin-exp-ℕ k l = inv-equiv (function-Fin k l)

Recent changes