Commuting hexagons of identifications
Content created by Egbert Rijke and Vojtěch Štěpančík.
Created on 2023-09-17.
Last modified on 2023-10-10.
module foundation.commuting-hexagons-of-identifications where
Idea
A hexagon of identifications is an identification
((α ∙ β) ∙ γ) = (δ ∙ (ε ∙ ζ))
.
Definition
Hexagons of identifications
coherence-hexagon : {l : Level} {A : UU l} {x u u' v v' y : A} (α : x = u) (β : u = u') (γ : u' = y) (δ : x = v) (ε : v = v') (ζ : v' = y) → UU l coherence-hexagon α β γ δ ε ζ = ((α ∙ β) ∙ γ) = (δ ∙ (ε ∙ ζ))
Symmetries of hexagons of identifications
module _ {l : Level} {A : UU l} {x u u' v v' y : A} where hexagon-rotate-120 : (α : x = u) (β : u = u') (γ : u' = y) (δ : x = v) (ε : v = v') (ζ : v' = y) → coherence-hexagon α β γ δ ε ζ → coherence-hexagon (inv ε) (inv δ) α ζ (inv γ) (inv β) hexagon-rotate-120 refl refl refl refl refl .refl refl = refl hexagon-rotate-240 : (α : x = u) (β : u = u') (γ : u' = y) (δ : x = v) (ε : v = v') (ζ : v' = y) → coherence-hexagon α β γ δ ε ζ → coherence-hexagon γ (inv ζ) (inv ε) (inv β) (inv α) δ hexagon-rotate-240 refl refl refl refl refl .refl refl = refl hexagon-mirror-A : (α : x = u) (β : u = u') (γ : u' = y) (δ : x = v) (ε : v = v') (ζ : v' = y) → coherence-hexagon α β γ δ ε ζ → coherence-hexagon ε ζ (inv γ) (inv δ) α β hexagon-mirror-A refl refl refl refl refl .refl refl = refl hexagon-mirror-B : (α : x = u) (β : u = u') (γ : u' = y) (δ : x = v) (ε : v = v') (ζ : v' = y) → coherence-hexagon α β γ δ ε ζ → coherence-hexagon (inv α) δ ε β γ (inv ζ) hexagon-mirror-B refl refl refl refl refl .refl refl = refl hexagon-mirror-C : (α : x = u) (β : u = u') (γ : u' = y) (δ : x = v) (ε : v = v') (ζ : v' = y) → coherence-hexagon α β γ δ ε ζ → coherence-hexagon (inv γ) (inv β) (inv α) (inv ζ) (inv ε) (inv δ) hexagon-mirror-C refl refl refl refl refl .refl refl = refl
Inversion of a hexagon
The definition of a hexagon has an explicit asymmetrical choice of association,
so inv
only gives the correct identification up to reassociation.
module _ { l : Level} {A : UU l} {x u u' v v' y : A} where inv-hexagon : ( α : x = u) (β : u = u') (γ : u' = y) → ( δ : x = v) (ε : v = v') (ζ : v' = y) → coherence-hexagon α β γ δ ε ζ → coherence-hexagon δ ε ζ α β γ inv-hexagon refl refl refl refl refl .refl refl = refl
Recent changes
- 2023-10-10. Vojtěch Štěpančík and Egbert Rijke. Flattening lemma for pushouts 2: descent data boogaloo (#816).
- 2023-09-17. Egbert Rijke. Moving file about hexagons of identifications (#782).