The congruence relations on the natural numbers
Content created by Egbert Rijke, Fredrik Bakke, Jonathan Prieto-Cubides, Julian KG, fernabnor and louismntnu.
Created on 2022-01-26.
Last modified on 2023-09-11.
module elementary-number-theory.congruence-natural-numbers where
Imports
open import elementary-number-theory.addition-natural-numbers open import elementary-number-theory.distance-natural-numbers open import elementary-number-theory.divisibility-natural-numbers open import elementary-number-theory.multiplication-natural-numbers open import elementary-number-theory.natural-numbers open import elementary-number-theory.strict-inequality-natural-numbers open import foundation.action-on-identifications-functions open import foundation.binary-relations open import foundation.coproduct-types open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.transport-along-identifications open import foundation.universe-levels open import univalent-combinatorics.standard-finite-types
Properties
The congruence relations on the natural numbers
cong-ℕ : ℕ → ℕ → ℕ → UU lzero cong-ℕ k x y = div-ℕ k (dist-ℕ x y) _≡_mod_ : ℕ → ℕ → ℕ → UU lzero x ≡ y mod k = cong-ℕ k x y concatenate-eq-cong-eq-ℕ : (k : ℕ) {x1 x2 x3 x4 : ℕ} → x1 = x2 → cong-ℕ k x2 x3 → x3 = x4 → cong-ℕ k x1 x4 concatenate-eq-cong-eq-ℕ k refl H refl = H concatenate-eq-cong-ℕ : (k : ℕ) {x1 x2 x3 : ℕ} → x1 = x2 → cong-ℕ k x2 x3 → cong-ℕ k x1 x3 concatenate-eq-cong-ℕ k refl H = H concatenate-cong-eq-ℕ : (k : ℕ) {x1 x2 x3 : ℕ} → cong-ℕ k x1 x2 → x2 = x3 → cong-ℕ k x1 x3 concatenate-cong-eq-ℕ k H refl = H is-indiscrete-cong-one-ℕ : (x y : ℕ) → cong-ℕ 1 x y is-indiscrete-cong-one-ℕ x y = div-one-ℕ (dist-ℕ x y) is-discrete-cong-zero-ℕ : (x y : ℕ) → cong-ℕ zero-ℕ x y → x = y is-discrete-cong-zero-ℕ x y (pair k p) = eq-dist-ℕ x y ((inv p) ∙ (right-zero-law-mul-ℕ k)) cong-zero-ℕ : (k : ℕ) → cong-ℕ k k zero-ℕ pr1 (cong-zero-ℕ k) = 1 pr2 (cong-zero-ℕ k) = (left-unit-law-mul-ℕ k) ∙ (inv (right-unit-law-dist-ℕ k)) refl-cong-ℕ : (k : ℕ) → is-reflexive (cong-ℕ k) pr1 (refl-cong-ℕ k x) = zero-ℕ pr2 (refl-cong-ℕ k x) = (left-zero-law-mul-ℕ (succ-ℕ k)) ∙ (inv (dist-eq-ℕ x x refl)) cong-identification-ℕ : (k : ℕ) {x y : ℕ} → x = y → cong-ℕ k x y cong-identification-ℕ k {x} refl = refl-cong-ℕ k x symmetric-cong-ℕ : (k : ℕ) → is-symmetric (cong-ℕ k) pr1 (symmetric-cong-ℕ k x y (pair d p)) = d pr2 (symmetric-cong-ℕ k x y (pair d p)) = p ∙ (symmetric-dist-ℕ x y) cong-zero-ℕ' : (k : ℕ) → cong-ℕ k zero-ℕ k cong-zero-ℕ' k = symmetric-cong-ℕ k k zero-ℕ (cong-zero-ℕ k) transitive-cong-ℕ : (k : ℕ) → is-transitive (cong-ℕ k) transitive-cong-ℕ k x y z e d with is-total-dist-ℕ x y z transitive-cong-ℕ k x y z e d | inl α = concatenate-div-eq-ℕ (div-add-ℕ k (dist-ℕ x y) (dist-ℕ y z) d e) α transitive-cong-ℕ k x y z e d | inr (inl α) = div-right-summand-ℕ k (dist-ℕ y z) (dist-ℕ x z) e ( concatenate-div-eq-ℕ d (inv α)) transitive-cong-ℕ k x y z e d | inr (inr α) = div-left-summand-ℕ k (dist-ℕ x z) (dist-ℕ x y) d ( concatenate-div-eq-ℕ e (inv α)) concatenate-cong-eq-cong-ℕ : {k x1 x2 x3 x4 : ℕ} → cong-ℕ k x1 x2 → x2 = x3 → cong-ℕ k x3 x4 → cong-ℕ k x1 x4 concatenate-cong-eq-cong-ℕ {k} {x} {y} {.y} {z} H refl K = transitive-cong-ℕ k x y z K H concatenate-eq-cong-eq-cong-eq-ℕ : (k : ℕ) {x1 x2 x3 x4 x5 x6 : ℕ} → x1 = x2 → cong-ℕ k x2 x3 → x3 = x4 → cong-ℕ k x4 x5 → x5 = x6 → cong-ℕ k x1 x6 concatenate-eq-cong-eq-cong-eq-ℕ k {x} {.x} {y} {.y} {z} {.z} refl H refl K refl = transitive-cong-ℕ k x y z K H
eq-cong-le-dist-ℕ : (k x y : ℕ) → le-ℕ (dist-ℕ x y) k → cong-ℕ k x y → x = y eq-cong-le-dist-ℕ k x y H K = eq-dist-ℕ x y (is-zero-div-ℕ k (dist-ℕ x y) H K)
eq-cong-le-ℕ : (k x y : ℕ) → le-ℕ x k → le-ℕ y k → cong-ℕ k x y → x = y eq-cong-le-ℕ k x y H K = eq-cong-le-dist-ℕ k x y (strict-upper-bound-dist-ℕ k x y H K)
eq-cong-nat-Fin : (k : ℕ) (x y : Fin k) → cong-ℕ k (nat-Fin k x) (nat-Fin k y) → x = y eq-cong-nat-Fin (succ-ℕ k) x y H = is-injective-nat-Fin (succ-ℕ k) ( eq-cong-le-ℕ (succ-ℕ k) (nat-Fin (succ-ℕ k) x) (nat-Fin (succ-ℕ k) y) ( strict-upper-bound-nat-Fin (succ-ℕ k) x) ( strict-upper-bound-nat-Fin (succ-ℕ k) y) ( H))
cong-is-zero-nat-zero-Fin : {k : ℕ} → cong-ℕ (succ-ℕ k) (nat-Fin (succ-ℕ k) (zero-Fin k)) zero-ℕ cong-is-zero-nat-zero-Fin {k} = cong-identification-ℕ (succ-ℕ k) (is-zero-nat-zero-Fin {k})
eq-cong-zero-ℕ : (x y : ℕ) → cong-ℕ zero-ℕ x y → x = y eq-cong-zero-ℕ x y H = eq-dist-ℕ x y (is-zero-div-zero-ℕ (dist-ℕ x y) H) is-one-cong-succ-ℕ : {k : ℕ} (x : ℕ) → cong-ℕ k x (succ-ℕ x) → is-one-ℕ k is-one-cong-succ-ℕ {k} x H = is-one-div-one-ℕ k (tr (div-ℕ k) (is-one-dist-succ-ℕ x) H)
Congruence is invariant under scalar multiplication
scalar-invariant-cong-ℕ : (k x y z : ℕ) → cong-ℕ k x y → cong-ℕ k (z *ℕ x) (z *ℕ y) pr1 (scalar-invariant-cong-ℕ k x y z (pair d p)) = z *ℕ d pr2 (scalar-invariant-cong-ℕ k x y z (pair d p)) = ( associative-mul-ℕ z d k) ∙ ( ( ap (z *ℕ_) p) ∙ ( left-distributive-mul-dist-ℕ x y z)) scalar-invariant-cong-ℕ' : (k x y z : ℕ) → cong-ℕ k x y → cong-ℕ k (x *ℕ z) (y *ℕ z) scalar-invariant-cong-ℕ' k x y z H = concatenate-eq-cong-eq-ℕ k ( commutative-mul-ℕ x z) ( scalar-invariant-cong-ℕ k x y z H) ( commutative-mul-ℕ z y)
Multiplication respects the congruence relation
congruence-mul-ℕ : (k : ℕ) {x y x' y' : ℕ} → cong-ℕ k x x' → cong-ℕ k y y' → cong-ℕ k (x *ℕ y) (x' *ℕ y') congruence-mul-ℕ k {x} {y} {x'} {y'} H K = transitive-cong-ℕ k (x *ℕ y) (x *ℕ y') (x' *ℕ y') ( scalar-invariant-cong-ℕ' k x x' y' H) ( scalar-invariant-cong-ℕ k y y' x K)
The congruence is translation invariant
translation-invariant-cong-ℕ : (k x y z : ℕ) → cong-ℕ k x y → cong-ℕ k (z +ℕ x) (z +ℕ y) pr1 (translation-invariant-cong-ℕ k x y z (pair d p)) = d pr2 (translation-invariant-cong-ℕ k x y z (pair d p)) = p ∙ inv (translation-invariant-dist-ℕ z x y) translation-invariant-cong-ℕ' : (k x y z : ℕ) → cong-ℕ k x y → cong-ℕ k (x +ℕ z) (y +ℕ z) translation-invariant-cong-ℕ' k x y z H = concatenate-eq-cong-eq-ℕ k ( commutative-add-ℕ x z) ( translation-invariant-cong-ℕ k x y z H) ( commutative-add-ℕ z y) step-invariant-cong-ℕ : (k x y : ℕ) → cong-ℕ k x y → cong-ℕ k (succ-ℕ x) (succ-ℕ y) step-invariant-cong-ℕ k x y = translation-invariant-cong-ℕ' k x y 1 reflects-cong-add-ℕ : {k : ℕ} (x : ℕ) {y z : ℕ} → cong-ℕ k (x +ℕ y) (x +ℕ z) → cong-ℕ k y z pr1 (reflects-cong-add-ℕ {k} x {y} {z} (pair d p)) = d pr2 (reflects-cong-add-ℕ {k} x {y} {z} (pair d p)) = p ∙ translation-invariant-dist-ℕ x y z reflects-cong-add-ℕ' : {k : ℕ} (x : ℕ) {y z : ℕ} → cong-ℕ k (add-ℕ' x y) (add-ℕ' x z) → cong-ℕ k y z reflects-cong-add-ℕ' {k} x {y} {z} H = reflects-cong-add-ℕ x {y} {z} ( concatenate-eq-cong-eq-ℕ k ( commutative-add-ℕ x y) ( H) ( commutative-add-ℕ z x))
Recent changes
- 2023-09-11. Fredrik Bakke. Transport along and action on equivalences (#706).
- 2023-06-25. Fredrik Bakke, louismntnu, fernabnor, Egbert Rijke and Julian KG. Posets are categories, and refactor binary relations (#665).
- 2023-06-10. Egbert Rijke and Fredrik Bakke. Cleaning up synthetic homotopy theory (#649).
- 2023-05-13. Fredrik Bakke. Refactor to use infix binary operators for arithmetic (#620).
- 2023-04-08. Egbert Rijke. Refactoring elementary number theory files (#546).