The large ring of Dedekind real numbers
Content created by Louis Wasserman.
Created on 2025-11-06.
Last modified on 2025-11-10.
{-# OPTIONS --lossy-unification #-} module real-numbers.large-ring-of-real-numbers where
Imports
open import commutative-algebra.commutative-rings open import commutative-algebra.homomorphisms-commutative-rings open import commutative-algebra.large-commutative-rings open import elementary-number-theory.ring-of-rational-numbers open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.universe-levels open import real-numbers.large-additive-group-of-real-numbers open import real-numbers.multiplication-real-numbers open import real-numbers.raising-universe-levels-real-numbers open import real-numbers.rational-real-numbers open import ring-theory.large-rings
Idea
The Dedekind real numbers form a large commutative ring under addition and multiplication.
Definition
large-ring-ℝ : Large-Ring lsuc (_⊔_) large-ring-ℝ = make-Large-Ring ( large-ab-add-ℝ) ( mul-ℝ) ( λ _ _ a~a' _ _ → preserves-sim-mul-ℝ a~a') ( one-ℝ) ( associative-mul-ℝ) ( left-unit-law-mul-ℝ) ( right-unit-law-mul-ℝ) ( left-distributive-mul-add-ℝ) ( right-distributive-mul-add-ℝ) large-commutative-ring-ℝ : Large-Commutative-Ring lsuc (_⊔_) large-commutative-ring-ℝ = make-Large-Commutative-Ring ( large-ring-ℝ) ( commutative-mul-ℝ)
Properties
The small commutative ring of real numbers at a universe level
commutative-ring-ℝ : (l : Level) → Commutative-Ring (lsuc l) commutative-ring-ℝ = commutative-ring-Large-Commutative-Ring large-commutative-ring-ℝ
The canonical embedding of rational numbers in the real numbers is a ring homomorphism
hom-ring-real-ℚ : hom-Commutative-Ring commutative-ring-ℚ (commutative-ring-ℝ lzero) hom-ring-real-ℚ = ( hom-ab-add-real-ℚ , inv (mul-real-ℚ _ _) , eq-raise-ℝ _)
Raising the universe level of real numbers is a ring homomorphism
hom-ring-raise-ℝ : (l1 l2 : Level) → hom-Commutative-Ring (commutative-ring-ℝ l1) (commutative-ring-ℝ (l1 ⊔ l2)) hom-ring-raise-ℝ = hom-raise-Large-Commutative-Ring large-commutative-ring-ℝ
Recent changes
- 2025-11-10. Louis Wasserman. The sum of geometric series in the real numbers (#1676).
- 2025-11-09. Louis Wasserman. Cleanups in real numbers (#1675).
- 2025-11-08. Louis Wasserman. Powers of real numbers (#1673).
- 2025-11-06. Louis Wasserman. The large ring of real numbers (#1664).