Homomorphisms of abelian groups

Content created by Egbert Rijke, Fredrik Bakke and Jonathan Prieto-Cubides.

Created on 2022-03-17.
Last modified on 2024-03-11.

module group-theory.homomorphisms-abelian-groups where
open import category-theory.large-categories

open import foundation.dependent-pair-types
open import foundation.equivalences
open import foundation.function-types
open import foundation.identity-types
open import foundation.sets
open import foundation.torsorial-type-families
open import foundation.universe-levels

open import group-theory.abelian-groups
open import group-theory.category-of-abelian-groups
open import group-theory.homomorphisms-commutative-monoids
open import group-theory.homomorphisms-groups
open import group-theory.homomorphisms-semigroups


Homomorphisms between abelian groups are just homomorphisms between their underlying groups.


The predicate that a map between abelian groups preserves addition

module _
  {l1 l2 : Level} (A : Ab l1) (B : Ab l2)

  preserves-add-Ab : (type-Ab A  type-Ab B)  UU (l1  l2)
  preserves-add-Ab = preserves-mul-Semigroup (semigroup-Ab A) (semigroup-Ab B)

The predicate that a map between abelian groups preserves zero

module _
  {l1 l2 : Level} (A : Ab l1) (B : Ab l2)

  preserves-zero-Ab : (type-Ab A  type-Ab B)  UU l2
  preserves-zero-Ab = preserves-unit-Group (group-Ab A) (group-Ab B)

The predicate that a map between abelian groups preserves negatives

module _
  {l1 l2 : Level} (A : Ab l1) (B : Ab l2)

  preserves-negatives-Ab : (type-Ab A  type-Ab B)  UU (l1  l2)
  preserves-negatives-Ab =
    preserves-inverses-Group (group-Ab A) (group-Ab B)

Homomorphisms of abelian groups

module _
  {l1 l2 : Level} (A : Ab l1) (B : Ab l2)

  hom-set-Ab : Set (l1  l2)
  hom-set-Ab = hom-set-Large-Category Ab-Large-Category A B

  hom-Ab : UU (l1  l2)
  hom-Ab = hom-Large-Category Ab-Large-Category A B

  map-hom-Ab : hom-Ab  type-Ab A  type-Ab B
  map-hom-Ab = map-hom-Group (group-Ab A) (group-Ab B)

  preserves-add-hom-Ab : (f : hom-Ab)  preserves-add-Ab A B (map-hom-Ab f)
  preserves-add-hom-Ab f = preserves-mul-hom-Group (group-Ab A) (group-Ab B) f

  preserves-zero-hom-Ab : (f : hom-Ab)  preserves-zero-Ab A B (map-hom-Ab f)
  preserves-zero-hom-Ab f = preserves-unit-hom-Group (group-Ab A) (group-Ab B) f

  preserves-negatives-hom-Ab :
    (f : hom-Ab)  preserves-negatives-Ab A B (map-hom-Ab f)
  preserves-negatives-hom-Ab f =
    preserves-inv-hom-Group (group-Ab A) (group-Ab B) f

  hom-semigroup-hom-Ab :
    hom-Ab  hom-Semigroup (semigroup-Ab A) (semigroup-Ab B)
  pr1 (hom-semigroup-hom-Ab f) = map-hom-Ab f
  pr2 (hom-semigroup-hom-Ab f) = preserves-add-hom-Ab f

  hom-commutative-monoid-hom-Ab :
      ( commutative-monoid-Ab A)
      ( commutative-monoid-Ab B)
  pr1 (hom-commutative-monoid-hom-Ab f) = hom-semigroup-hom-Ab f
  pr2 (hom-commutative-monoid-hom-Ab f) = preserves-zero-hom-Ab f

Characterization of the identity type of the abelian group homomorphisms

module _
  {l1 l2 : Level} (A : Ab l1) (B : Ab l2)

  htpy-hom-Ab : (f g : hom-Ab A B)  UU (l1  l2)
  htpy-hom-Ab f g = htpy-hom-Group (group-Ab A) (group-Ab B) f g

  refl-htpy-hom-Ab : (f : hom-Ab A B)  htpy-hom-Ab f f
  refl-htpy-hom-Ab f = refl-htpy-hom-Group (group-Ab A) (group-Ab B) f

  htpy-eq-hom-Ab : (f g : hom-Ab A B)  Id f g  htpy-hom-Ab f g
  htpy-eq-hom-Ab f g = htpy-eq-hom-Group (group-Ab A) (group-Ab B) f g

    is-torsorial-htpy-hom-Ab :
      (f : hom-Ab A B)  is-torsorial (htpy-hom-Ab f)
    is-torsorial-htpy-hom-Ab f =
      is-torsorial-htpy-hom-Group (group-Ab A) (group-Ab B) f

    is-equiv-htpy-eq-hom-Ab :
      (f g : hom-Ab A B)  is-equiv (htpy-eq-hom-Ab f g)
    is-equiv-htpy-eq-hom-Ab f g =
      is-equiv-htpy-eq-hom-Group (group-Ab A) (group-Ab B) f g

  eq-htpy-hom-Ab : {f g : hom-Ab A B}  htpy-hom-Ab f g  Id f g
  eq-htpy-hom-Ab = eq-htpy-hom-Group (group-Ab A) (group-Ab B)

  is-set-hom-Ab : is-set (hom-Ab A B)
  is-set-hom-Ab = is-set-hom-Group (group-Ab A) (group-Ab B)

The identity morphism of abelian groups

preserves-add-id : {l : Level} (A : Ab l)  preserves-add-Ab A A id
preserves-add-id A = preserves-mul-id-Semigroup (semigroup-Ab A)

id-hom-Ab : {l1 : Level} (A : Ab l1)  hom-Ab A A
id-hom-Ab A = id-hom-Group (group-Ab A)

Composition of morphisms of abelian groups

comp-hom-Ab :
  { l1 l2 l3 : Level} (A : Ab l1) (B : Ab l2) (C : Ab l3) 
  ( hom-Ab B C)  (hom-Ab A B)  (hom-Ab A C)
comp-hom-Ab A B C =
  comp-hom-Group (group-Ab A) (group-Ab B) (group-Ab C)

Associativity of composition of morphisms of abelian groups

associative-comp-hom-Ab :
  {l1 l2 l3 l4 : Level}
  (A : Ab l1) (B : Ab l2) (C : Ab l3) (D : Ab l4)
  (h : hom-Ab C D) (g : hom-Ab B C) (f : hom-Ab A B) 
  comp-hom-Ab A B D (comp-hom-Ab B C D h g) f 
  comp-hom-Ab A C D h (comp-hom-Ab A B C g f)
associative-comp-hom-Ab A B C D =
    ( semigroup-Ab A)
    ( semigroup-Ab B)
    ( semigroup-Ab C)
    ( semigroup-Ab D)

The unit laws for composition of abelian groups

left-unit-law-comp-hom-Ab :
  { l1 l2 : Level} (A : Ab l1) (B : Ab l2)
  ( f : hom-Ab A B)  Id (comp-hom-Ab A B B (id-hom-Ab B) f) f
left-unit-law-comp-hom-Ab A B =
  left-unit-law-comp-hom-Semigroup (semigroup-Ab A) (semigroup-Ab B)

right-unit-law-comp-hom-Ab :
  { l1 l2 : Level} (A : Ab l1) (B : Ab l2)
  ( f : hom-Ab A B)  Id (comp-hom-Ab A A B f (id-hom-Ab A)) f
right-unit-law-comp-hom-Ab A B =
  right-unit-law-comp-hom-Semigroup (semigroup-Ab A) (semigroup-Ab B)

Recent changes