Multiplication on integer fractions

Content created by Egbert Rijke, Fredrik Bakke and Julian KG.

Created on 2023-06-25.
Last modified on 2023-09-15.

module elementary-number-theory.multiplication-integer-fractions where
Imports
open import elementary-number-theory.integer-fractions
open import elementary-number-theory.multiplication-integers

open import foundation.action-on-identifications-binary-functions
open import foundation.dependent-pair-types
open import foundation.identity-types

Idea

Multiplication on integer fractions is an extension of the multiplicative operation on the integers to integer fractions. Note that the basic properties of multiplication on integer fraction only hold up to fraction similarity.

Definition

mul-fraction-ℤ : fraction-ℤ  fraction-ℤ  fraction-ℤ
pr1 (mul-fraction-ℤ (m , n , n-pos) (m' , n' , n'-pos)) =
  m *ℤ m'
pr1 (pr2 (mul-fraction-ℤ (m , n , n-pos) (m' , n' , n'-pos))) =
  n *ℤ n'
pr2 (pr2 (mul-fraction-ℤ (m , n , n-pos) (m' , n' , n'-pos))) =
  is-positive-mul-ℤ n-pos n'-pos

mul-fraction-ℤ' : fraction-ℤ  fraction-ℤ  fraction-ℤ
mul-fraction-ℤ' x y = mul-fraction-ℤ y x

infixl 40 _*fraction-ℤ_
_*fraction-ℤ_ = mul-fraction-ℤ

ap-mul-fraction-ℤ :
  {x y x' y' : fraction-ℤ}  x  x'  y  y' 
  x *fraction-ℤ y  x' *fraction-ℤ y'
ap-mul-fraction-ℤ p q = ap-binary mul-fraction-ℤ p q

Properties

Multiplication respects the similarity relation

sim-fraction-mul-fraction-ℤ :
  {x x' y y' : fraction-ℤ} 
  sim-fraction-ℤ x x' 
  sim-fraction-ℤ y y' 
  sim-fraction-ℤ (x *fraction-ℤ y) (x' *fraction-ℤ y')
sim-fraction-mul-fraction-ℤ
  {(nx , dx , dxp)} {(nx' , dx' , dx'p)}
  {(ny , dy , dyp)} {(ny' , dy' , dy'p)} p q =
  equational-reasoning
    (nx *ℤ ny) *ℤ (dx' *ℤ dy')
     (nx *ℤ dx') *ℤ (ny *ℤ dy')
      by interchange-law-mul-mul-ℤ nx ny dx' dy'
     (nx' *ℤ dx) *ℤ (ny' *ℤ dy)
      by ap-mul-ℤ p q
     (nx' *ℤ ny') *ℤ (dx *ℤ dy)
      by interchange-law-mul-mul-ℤ nx' dx ny' dy

Unit laws

left-unit-law-mul-fraction-ℤ :
  (k : fraction-ℤ) 
  sim-fraction-ℤ (mul-fraction-ℤ one-fraction-ℤ k) k
left-unit-law-mul-fraction-ℤ k = refl

right-unit-law-mul-fraction-ℤ :
  (k : fraction-ℤ) 
  sim-fraction-ℤ (mul-fraction-ℤ k one-fraction-ℤ) k
right-unit-law-mul-fraction-ℤ (n , d , p) =
  ap-mul-ℤ (right-unit-law-mul-ℤ n) (inv (right-unit-law-mul-ℤ d))

Multiplication is associative

associative-mul-fraction-ℤ :
  (x y z : fraction-ℤ) 
  sim-fraction-ℤ
    (mul-fraction-ℤ (mul-fraction-ℤ x y) z)
    (mul-fraction-ℤ x (mul-fraction-ℤ y z))
associative-mul-fraction-ℤ (nx , dx , dxp) (ny , dy , dyp) (nz , dz , dzp) =
  ap-mul-ℤ (associative-mul-ℤ nx ny nz) (inv (associative-mul-ℤ dx dy dz))

Multiplication is commutative

commutative-mul-fraction-ℤ :
  (x y : fraction-ℤ)  sim-fraction-ℤ (x *fraction-ℤ y) (y *fraction-ℤ x)
commutative-mul-fraction-ℤ (nx , dx , dxp) (ny , dy , dyp) =
  ap-mul-ℤ (commutative-mul-ℤ nx ny) (commutative-mul-ℤ dy dx)

Recent changes