Isomorphisms of group actions
Content created by Fredrik Bakke, Egbert Rijke and Jonathan Prieto-Cubides.
Created on 2022-03-17.
Last modified on 2024-04-11.
module group-theory.isomorphisms-group-actions where
Imports
open import category-theory.isomorphisms-in-large-precategories open import foundation.commuting-squares-of-maps open import foundation.contractible-types open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.function-extensionality open import foundation.functoriality-dependent-pair-types open import foundation.identity-types open import foundation.logical-equivalences open import foundation.propositions open import foundation.subtypes open import foundation.torsorial-type-families open import foundation.type-arithmetic-dependent-pair-types open import foundation.universe-levels open import group-theory.equivalences-group-actions open import group-theory.group-actions open import group-theory.groups open import group-theory.homomorphisms-group-actions open import group-theory.precategory-of-group-actions
Definitions
The predicate of being an isomorphism of group actions
module _ {l1 l2 l3 : Level} (G : Group l1) (X : action-Group G l2) (Y : action-Group G l3) where is-iso-action-Group : (f : hom-action-Group G X Y) → UU (l1 ⊔ l2 ⊔ l3) is-iso-action-Group = is-iso-Large-Precategory (action-Group-Large-Precategory G) {X = X} {Y = Y} module _ {l1 l2 l3 : Level} (G : Group l1) (X : action-Group G l2) (Y : action-Group G l3) (f : hom-action-Group G X Y) (is-iso-f : is-iso-action-Group G X Y f) where hom-inv-is-iso-action-Group : hom-action-Group G Y X hom-inv-is-iso-action-Group = hom-inv-is-iso-Large-Precategory ( action-Group-Large-Precategory G) {X = X} {Y = Y} f is-iso-f map-hom-inv-is-iso-action-Group : type-action-Group G Y → type-action-Group G X map-hom-inv-is-iso-action-Group = map-hom-action-Group G Y X hom-inv-is-iso-action-Group is-section-hom-inv-is-iso-action-Group : ( comp-hom-action-Group G Y X Y f hom-inv-is-iso-action-Group) = ( id-hom-action-Group G Y) is-section-hom-inv-is-iso-action-Group = is-section-hom-inv-is-iso-Large-Precategory ( action-Group-Large-Precategory G) {X = X} {Y = Y} f is-iso-f is-retraction-hom-inv-is-iso-action-Group : ( comp-hom-action-Group G X Y X hom-inv-is-iso-action-Group f) = ( id-hom-action-Group G X) is-retraction-hom-inv-is-iso-action-Group = is-retraction-hom-inv-is-iso-Large-Precategory ( action-Group-Large-Precategory G) {X = X} {Y = Y} f is-iso-f
The type of isomorphisms of group actions
module _ {l1 l2 l3 : Level} (G : Group l1) (X : action-Group G l2) (Y : action-Group G l3) where iso-action-Group : UU (l1 ⊔ l2 ⊔ l3) iso-action-Group = iso-Large-Precategory (action-Group-Large-Precategory G) X Y hom-iso-action-Group : iso-action-Group → hom-action-Group G X Y hom-iso-action-Group = hom-iso-Large-Precategory (action-Group-Large-Precategory G) {X = X} {Y = Y} map-iso-action-Group : iso-action-Group → type-action-Group G X → type-action-Group G Y map-iso-action-Group f = map-hom-action-Group G X Y (hom-iso-action-Group f) preserves-action-iso-action-Group : (f : iso-action-Group) (g : type-Group G) → coherence-square-maps ( map-iso-action-Group f) ( mul-action-Group G X g) ( mul-action-Group G Y g) ( map-iso-action-Group f) preserves-action-iso-action-Group f = preserves-action-hom-action-Group G X Y (hom-iso-action-Group f) hom-inv-iso-action-Group : iso-action-Group → hom-action-Group G Y X hom-inv-iso-action-Group = hom-inv-iso-Large-Precategory ( action-Group-Large-Precategory G) {X = X} {Y = Y} map-hom-inv-iso-action-Group : iso-action-Group → type-action-Group G Y → type-action-Group G X map-hom-inv-iso-action-Group f = map-hom-action-Group G Y X (hom-inv-iso-action-Group f) is-section-hom-inv-iso-action-Group : (f : iso-action-Group) → ( comp-hom-action-Group G Y X Y ( hom-iso-action-Group f) ( hom-inv-iso-action-Group f)) = ( id-hom-action-Group G Y) is-section-hom-inv-iso-action-Group = is-section-hom-inv-iso-Large-Precategory ( action-Group-Large-Precategory G) {X = X} {Y = Y} is-retraction-hom-inv-iso-action-Group : (f : iso-action-Group) → ( comp-hom-action-Group G X Y X ( hom-inv-iso-action-Group f) ( hom-iso-action-Group f)) = ( id-hom-action-Group G X) is-retraction-hom-inv-iso-action-Group = is-retraction-hom-inv-iso-Large-Precategory ( action-Group-Large-Precategory G) {X = X} {Y = Y} is-iso-iso-action-Group : (f : iso-action-Group) → is-iso-action-Group G X Y (hom-iso-action-Group f) is-iso-iso-action-Group = is-iso-iso-Large-Precategory ( action-Group-Large-Precategory G) {X = X} {Y = Y}
Properties
Isomorphisms of group actions are equivalent to equivalences of group actions
module _ {l1 l2 l3 : Level} (G : Group l1) (X : action-Group G l2) (Y : action-Group G l3) (f : hom-action-Group G X Y) where is-equiv-hom-is-iso-action-Group : is-iso-action-Group G X Y f → is-equiv-hom-action-Group G X Y f is-equiv-hom-is-iso-action-Group is-iso-f = is-equiv-is-invertible ( map-hom-inv-is-iso-action-Group G X Y f is-iso-f) ( htpy-eq-hom-action-Group G Y Y ( comp-hom-action-Group G Y X Y ( f) ( hom-inv-is-iso-action-Group G X Y f is-iso-f)) ( id-hom-action-Group G Y) ( is-section-hom-inv-is-iso-action-Group G X Y f is-iso-f)) ( htpy-eq-hom-action-Group G X X ( comp-hom-action-Group G X Y X ( hom-inv-is-iso-action-Group G X Y f is-iso-f) ( f)) ( id-hom-action-Group G X) ( is-retraction-hom-inv-is-iso-action-Group G X Y f is-iso-f)) is-iso-is-equiv-hom-action-Group : is-equiv-hom-action-Group G X Y f → is-iso-action-Group G X Y f pr1 (pr1 (is-iso-is-equiv-hom-action-Group is-equiv-f)) = map-inv-is-equiv is-equiv-f pr2 (pr1 (is-iso-is-equiv-hom-action-Group is-equiv-f)) = preserves-action-map-inv-is-equiv-hom-action-Group G X Y f is-equiv-f pr1 (pr2 (is-iso-is-equiv-hom-action-Group is-equiv-f)) = eq-type-subtype ( preserves-action-prop-Group G Y Y) ( eq-htpy (is-section-map-inv-is-equiv is-equiv-f)) pr2 (pr2 (is-iso-is-equiv-hom-action-Group is-equiv-f)) = eq-type-subtype ( preserves-action-prop-Group G X X) ( eq-htpy (is-retraction-map-inv-is-equiv is-equiv-f)) is-equiv-is-equiv-hom-is-iso-action-Group : is-equiv is-equiv-hom-is-iso-action-Group is-equiv-is-equiv-hom-is-iso-action-Group = is-equiv-has-converse-is-prop ( is-prop-is-iso-Large-Precategory ( action-Group-Large-Precategory G) {X = X} {Y = Y} f) ( is-property-is-equiv (map-hom-action-Group G X Y f)) ( is-iso-is-equiv-hom-action-Group) is-equiv-is-iso-is-equiv-hom-action-Group : is-equiv is-iso-is-equiv-hom-action-Group is-equiv-is-iso-is-equiv-hom-action-Group = is-equiv-has-converse-is-prop ( is-property-is-equiv (map-hom-action-Group G X Y f)) ( is-prop-is-iso-Large-Precategory ( action-Group-Large-Precategory G) {X = X} {Y = Y} f) ( is-equiv-hom-is-iso-action-Group) equiv-is-equiv-hom-is-iso-action-Group : is-iso-action-Group G X Y f ≃ is-equiv-hom-action-Group G X Y f pr1 equiv-is-equiv-hom-is-iso-action-Group = is-equiv-hom-is-iso-action-Group pr2 equiv-is-equiv-hom-is-iso-action-Group = is-equiv-is-equiv-hom-is-iso-action-Group equiv-is-iso-is-equiv-hom-action-Group : is-equiv-hom-action-Group G X Y f ≃ is-iso-action-Group G X Y f pr1 equiv-is-iso-is-equiv-hom-action-Group = is-iso-is-equiv-hom-action-Group pr2 equiv-is-iso-is-equiv-hom-action-Group = is-equiv-is-iso-is-equiv-hom-action-Group module _ {l1 l2 l3 : Level} (G : Group l1) (X : action-Group G l2) (Y : action-Group G l3) (f : iso-action-Group G X Y) where is-equiv-map-iso-action-Group : is-equiv (map-iso-action-Group G X Y f) is-equiv-map-iso-action-Group = is-equiv-hom-is-iso-action-Group G X Y ( hom-iso-action-Group G X Y f) ( is-iso-iso-action-Group G X Y f) equiv-iso-action-Group : equiv-action-Group G X Y pr1 (pr1 equiv-iso-action-Group) = map-iso-action-Group G X Y f pr2 (pr1 equiv-iso-action-Group) = is-equiv-map-iso-action-Group pr2 equiv-iso-action-Group = preserves-action-iso-action-Group G X Y f module _ {l1 l2 l3 : Level} (G : Group l1) (X : action-Group G l2) (Y : action-Group G l3) where equiv-equiv-iso-action-Group : iso-action-Group G X Y ≃ equiv-action-Group G X Y equiv-equiv-iso-action-Group = equiv-right-swap-Σ ∘e equiv-tot (equiv-is-equiv-hom-is-iso-action-Group G X Y) equiv-iso-equiv-action-Group : equiv-action-Group G X Y ≃ iso-action-Group G X Y equiv-iso-equiv-action-Group = equiv-tot (equiv-is-iso-is-equiv-hom-action-Group G X Y) ∘e equiv-right-swap-Σ
Isomorphisms characterize equality of G
-sets
module _ {l1 l2 : Level} (G : Group l1) (X : action-Group G l2) where is-torsorial-iso-action-Group : is-torsorial (iso-action-Group {l3 = l2} G X) is-torsorial-iso-action-Group = is-contr-equiv ( Σ (action-Group G l2) (equiv-action-Group G X)) ( equiv-tot (equiv-equiv-iso-action-Group G X)) ( is-torsorial-equiv-action-Group G X)
Recent changes
- 2024-04-11. Fredrik Bakke and Egbert Rijke. Propositional operations (#1008).
- 2023-11-24. Fredrik Bakke. The orbit category of a group (#935).
- 2023-11-24. Egbert Rijke. Abelianization (#877).
- 2023-10-19. Egbert Rijke. Characteristic subgroups (#863).
- 2023-09-26. Fredrik Bakke and Egbert Rijke. Maps of categories, functor categories, and small subprecategories (#794).