Binary dependent reflexive globular types
Content created by Egbert Rijke.
Created on 2024-12-03.
Last modified on 2024-12-03.
{-# OPTIONS --guardedness #-} module globular-types.binary-dependent-reflexive-globular-types where
Imports
open import foundation.universe-levels open import globular-types.binary-dependent-globular-types open import globular-types.globular-types open import globular-types.points-reflexive-globular-types open import globular-types.reflexive-globular-types
Idea
Consider two
reflexive globular types G
and
H
. A
binary dependent reflexive globular type¶
K
over G
and H
consists of a
binary dependent globular type
K
over G
and H
equipped with reflexivity structure refl K
.
A binary dependent globular type K
over reflexive globular types G
and H
is said to be
reflexive¶
if it comes equipped with
refl K : {x : G₀} {y : H₀} (u : K₀ x y) → K₁ (refl G x) (refl G y) u u,
such that the binary dependent globular type K' s t u v
over G' x x'
and
H' y y'
comes equipped with reflexivity structure for every s : G₁ x x'
and
t : H₁ y y'
.
Definitions
The predicate of being a reflexive binary dependent globular type
record is-reflexive-Binary-Dependent-Globular-Type {l1 l2 l3 l4 l5 l6 : Level} (G : Reflexive-Globular-Type l1 l2) (H : Reflexive-Globular-Type l3 l4) (K : Binary-Dependent-Globular-Type l5 l6 ( globular-type-Reflexive-Globular-Type G) ( globular-type-Reflexive-Globular-Type H)) : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4 ⊔ l5 ⊔ l6) where coinductive field refl-1-cell-is-reflexive-Binary-Dependent-Globular-Type : {x : 0-cell-Reflexive-Globular-Type G} {y : 0-cell-Reflexive-Globular-Type H} → (u : 0-cell-Binary-Dependent-Globular-Type K x y) → 1-cell-Binary-Dependent-Globular-Type K u u ( refl-1-cell-Reflexive-Globular-Type G) ( refl-1-cell-Reflexive-Globular-Type H) field refl-1-cell-binary-dependent-reflexive-globular-type-is-reflexive-Binary-Dependent-Globular-Type : {x x' : 0-cell-Reflexive-Globular-Type G} {y y' : 0-cell-Reflexive-Globular-Type H} (u : 0-cell-Binary-Dependent-Globular-Type K x y) (u' : 0-cell-Binary-Dependent-Globular-Type K x' y') → is-reflexive-Binary-Dependent-Globular-Type ( 1-cell-reflexive-globular-type-Reflexive-Globular-Type G x x') ( 1-cell-reflexive-globular-type-Reflexive-Globular-Type H y y') ( 1-cell-binary-dependent-globular-type-Binary-Dependent-Globular-Type K u u') open is-reflexive-Binary-Dependent-Globular-Type public
Binary dependent reflexive globular types
record Binary-Dependent-Reflexive-Globular-Type {l1 l2 l3 l4 : Level} (l5 l6 : Level) (G : Reflexive-Globular-Type l1 l2) (H : Reflexive-Globular-Type l3 l4) : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4 ⊔ lsuc l5 ⊔ lsuc l6) where field binary-dependent-globular-type-Binary-Dependent-Reflexive-Globular-Type : Binary-Dependent-Globular-Type l5 l6 ( globular-type-Reflexive-Globular-Type G) ( globular-type-Reflexive-Globular-Type H) 0-cell-Binary-Dependent-Reflexive-Globular-Type : (x : 0-cell-Reflexive-Globular-Type G) (y : 0-cell-Reflexive-Globular-Type H) → UU l5 0-cell-Binary-Dependent-Reflexive-Globular-Type = 0-cell-Binary-Dependent-Globular-Type binary-dependent-globular-type-Binary-Dependent-Reflexive-Globular-Type 1-cell-Binary-Dependent-Reflexive-Globular-Type : {x x' : 0-cell-Reflexive-Globular-Type G} {y y' : 0-cell-Reflexive-Globular-Type H} → 0-cell-Binary-Dependent-Reflexive-Globular-Type x y → 0-cell-Binary-Dependent-Reflexive-Globular-Type x' y' → 1-cell-Reflexive-Globular-Type G x x' → 1-cell-Reflexive-Globular-Type H y y' → UU l6 1-cell-Binary-Dependent-Reflexive-Globular-Type = 1-cell-Binary-Dependent-Globular-Type binary-dependent-globular-type-Binary-Dependent-Reflexive-Globular-Type 1-cell-binary-dependent-globular-type-Binary-Dependent-Reflexive-Globular-Type : {x x' : 0-cell-Reflexive-Globular-Type G} {y y' : 0-cell-Reflexive-Globular-Type H} → 0-cell-Binary-Dependent-Reflexive-Globular-Type x y → 0-cell-Binary-Dependent-Reflexive-Globular-Type x' y' → Binary-Dependent-Globular-Type l6 l6 ( 1-cell-globular-type-Reflexive-Globular-Type G x x') ( 1-cell-globular-type-Reflexive-Globular-Type H y y') 1-cell-binary-dependent-globular-type-Binary-Dependent-Reflexive-Globular-Type = 1-cell-binary-dependent-globular-type-Binary-Dependent-Globular-Type binary-dependent-globular-type-Binary-Dependent-Reflexive-Globular-Type field refl-Binary-Dependent-Reflexive-Globular-Type : is-reflexive-Binary-Dependent-Globular-Type G H binary-dependent-globular-type-Binary-Dependent-Reflexive-Globular-Type refl-1-cell-Binary-Dependent-Reflexive-Globular-Type : {x : 0-cell-Reflexive-Globular-Type G} {y : 0-cell-Reflexive-Globular-Type H} (s : 0-cell-Binary-Dependent-Reflexive-Globular-Type x y) → 1-cell-Binary-Dependent-Reflexive-Globular-Type s s ( refl-1-cell-Reflexive-Globular-Type G) ( refl-1-cell-Reflexive-Globular-Type H) refl-1-cell-Binary-Dependent-Reflexive-Globular-Type = refl-1-cell-is-reflexive-Binary-Dependent-Globular-Type refl-Binary-Dependent-Reflexive-Globular-Type refl-1-cell-binary-dependent-reflexive-globular-type-Binary-Dependent-Reflexive-Globular-Type : {x x' : 0-cell-Reflexive-Globular-Type G} {y y' : 0-cell-Reflexive-Globular-Type H} → (s : 0-cell-Binary-Dependent-Reflexive-Globular-Type x y) → (t : 0-cell-Binary-Dependent-Reflexive-Globular-Type x' y') → is-reflexive-Binary-Dependent-Globular-Type ( 1-cell-reflexive-globular-type-Reflexive-Globular-Type G x x') ( 1-cell-reflexive-globular-type-Reflexive-Globular-Type H y y') ( 1-cell-binary-dependent-globular-type-Binary-Dependent-Reflexive-Globular-Type ( s) ( t)) refl-1-cell-binary-dependent-reflexive-globular-type-Binary-Dependent-Reflexive-Globular-Type = refl-1-cell-binary-dependent-reflexive-globular-type-is-reflexive-Binary-Dependent-Globular-Type refl-Binary-Dependent-Reflexive-Globular-Type 1-cell-binary-dependent-reflexive-globular-type-Binary-Dependent-Reflexive-Globular-Type : {x x' : 0-cell-Reflexive-Globular-Type G} {y y' : 0-cell-Reflexive-Globular-Type H} → (s : 0-cell-Binary-Dependent-Reflexive-Globular-Type x y) → (t : 0-cell-Binary-Dependent-Reflexive-Globular-Type x' y') → Binary-Dependent-Reflexive-Globular-Type l6 l6 ( 1-cell-reflexive-globular-type-Reflexive-Globular-Type G x x') ( 1-cell-reflexive-globular-type-Reflexive-Globular-Type H y y') binary-dependent-globular-type-Binary-Dependent-Reflexive-Globular-Type ( 1-cell-binary-dependent-reflexive-globular-type-Binary-Dependent-Reflexive-Globular-Type ( s) ( t)) = 1-cell-binary-dependent-globular-type-Binary-Dependent-Reflexive-Globular-Type ( s) ( t) refl-Binary-Dependent-Reflexive-Globular-Type ( 1-cell-binary-dependent-reflexive-globular-type-Binary-Dependent-Reflexive-Globular-Type ( s) ( t)) = refl-1-cell-binary-dependent-reflexive-globular-type-Binary-Dependent-Reflexive-Globular-Type ( s) ( t) open Binary-Dependent-Reflexive-Globular-Type public
Evaluating binary dependent reflexive globular types at points
globular-type-ev-point-Binary-Dependent-Reflexive-Globular-Type : {l1 l2 l3 l4 l5 l6 : Level} (G : Reflexive-Globular-Type l1 l2) (H : Reflexive-Globular-Type l3 l4) (K : Binary-Dependent-Reflexive-Globular-Type l5 l6 G H) (x : point-Reflexive-Globular-Type G) (y : point-Reflexive-Globular-Type H) → Globular-Type l5 l6 globular-type-ev-point-Binary-Dependent-Reflexive-Globular-Type G H K x y = ev-point-Binary-Dependent-Globular-Type ( binary-dependent-globular-type-Binary-Dependent-Reflexive-Globular-Type K) ( point-globular-type-point-Reflexive-Globular-Type G x) ( point-globular-type-point-Reflexive-Globular-Type H y) refl-ev-point-Binary-Dependent-Reflexive-Globular-Type : {l1 l2 l3 l4 l5 l6 : Level} (G : Reflexive-Globular-Type l1 l2) (H : Reflexive-Globular-Type l3 l4) (K : Binary-Dependent-Reflexive-Globular-Type l5 l6 G H) (x : point-Reflexive-Globular-Type G) (y : point-Reflexive-Globular-Type H) → is-reflexive-Globular-Type ( globular-type-ev-point-Binary-Dependent-Reflexive-Globular-Type G H K x y) is-reflexive-1-cell-is-reflexive-Globular-Type ( refl-ev-point-Binary-Dependent-Reflexive-Globular-Type G H K x y) = refl-1-cell-Binary-Dependent-Reflexive-Globular-Type K is-reflexive-1-cell-globular-type-is-reflexive-Globular-Type ( refl-ev-point-Binary-Dependent-Reflexive-Globular-Type G H K x y) = refl-ev-point-Binary-Dependent-Reflexive-Globular-Type ( 1-cell-reflexive-globular-type-Reflexive-Globular-Type G _ _) ( 1-cell-reflexive-globular-type-Reflexive-Globular-Type H _ _) ( 1-cell-binary-dependent-reflexive-globular-type-Binary-Dependent-Reflexive-Globular-Type ( K) ( _) ( _)) ( refl-1-cell-Reflexive-Globular-Type G) ( refl-1-cell-Reflexive-Globular-Type H) ev-point-Binary-Dependent-Reflexive-Globular-Type : {l1 l2 l3 l4 l5 l6 : Level} (G : Reflexive-Globular-Type l1 l2) (H : Reflexive-Globular-Type l3 l4) (K : Binary-Dependent-Reflexive-Globular-Type l5 l6 G H) (x : point-Reflexive-Globular-Type G) (y : point-Reflexive-Globular-Type H) → Reflexive-Globular-Type l5 l6 globular-type-Reflexive-Globular-Type ( ev-point-Binary-Dependent-Reflexive-Globular-Type G H K x y) = globular-type-ev-point-Binary-Dependent-Reflexive-Globular-Type _ _ K x y refl-Reflexive-Globular-Type ( ev-point-Binary-Dependent-Reflexive-Globular-Type G H K x y) = refl-ev-point-Binary-Dependent-Reflexive-Globular-Type _ _ K x y
Recent changes
- 2024-12-03. Egbert Rijke. Hofmann-Streicher universes for graphs and globular types (#1196).