Morphisms of span diagrams

Content created by Egbert Rijke.

Created on 2024-01-28.
Last modified on 2024-04-25.

module foundation.morphisms-span-diagrams where
Imports
open import foundation.dependent-pair-types
open import foundation.morphisms-arrows
open import foundation.morphisms-spans
open import foundation.operations-spans
open import foundation.span-diagrams
open import foundation.universe-levels

open import foundation-core.commuting-squares-of-maps

Idea

A morphism of span diagrams from a span diagram A <-f- S -g-> B to a span diagram C <-h- T -k-> D consists of maps u : A → C, v : B → D, and w : S → T equipped with two homotopies witnessing that the diagram

f g A <----- S -----> B | | | u | | w | v ∨ ∨ ∨ C <----- T -----> D h k

commutes.

The definition of morphisms of span diagrams is given concisely in terms of the notion of morphisms of spans. In the resulting definitions, the commuting squares of morphisms of spans are oriented in the following way:

  • A homotopy map-domain-hom-span ∘ left-map-span s ~ left-map-span t ∘ spanning-map-hom-span witnessing that the square

    spanning-map-hom-span S ----------------------> T | | left-map-span s | | left-map-span t ∨ ∨ A ----------------------> C map-domain-hom-span

    commutes.

  • A homotopy map-domain-hom-span ∘ right-map-span s ~ right-map-span t ∘ spanning-map-hom-span witnessing that the square

    spanning-map-hom-span S ----------------------> T | | right-map-span s | | right-map-span t ∨ ∨ B ----------------------> D map-codomain-hom-span

    commutes.

Definitions

Morphisms of span diagrams

module _
  {l1 l2 l3 l4 l5 l6 : Level}
  (𝒮 : span-diagram l1 l2 l3) (𝒯 : span-diagram l4 l5 l6)
  where

  hom-span-diagram : UU (l1  l2  l3  l4  l5  l6)
  hom-span-diagram =
    Σ ( domain-span-diagram 𝒮  domain-span-diagram 𝒯)
      ( λ f 
        Σ ( codomain-span-diagram 𝒮  codomain-span-diagram 𝒯)
          ( λ g 
            hom-span
              ( concat-span
                ( span-span-diagram 𝒮)
                ( f)
                ( g))
              ( span-span-diagram 𝒯)))

module _
  {l1 l2 l3 l4 l5 l6 : Level}
  (𝒮 : span-diagram l1 l2 l3) (𝒯 : span-diagram l4 l5 l6)
  (f : hom-span-diagram 𝒮 𝒯)
  where

  map-domain-hom-span-diagram :
    domain-span-diagram 𝒮  domain-span-diagram 𝒯
  map-domain-hom-span-diagram = pr1 f

  map-codomain-hom-span-diagram :
    codomain-span-diagram 𝒮  codomain-span-diagram 𝒯
  map-codomain-hom-span-diagram = pr1 (pr2 f)

  hom-span-hom-span-diagram :
    hom-span
      ( concat-span
        ( span-span-diagram 𝒮)
        ( map-domain-hom-span-diagram)
        ( map-codomain-hom-span-diagram))
      ( span-span-diagram 𝒯)
  hom-span-hom-span-diagram = pr2 (pr2 f)

  spanning-map-hom-span-diagram :
    spanning-type-span-diagram 𝒮  spanning-type-span-diagram 𝒯
  spanning-map-hom-span-diagram =
    map-hom-span
      ( concat-span
        ( span-span-diagram 𝒮)
        ( map-domain-hom-span-diagram)
        ( map-codomain-hom-span-diagram))
      ( span-span-diagram 𝒯)
      ( hom-span-hom-span-diagram)

  left-square-hom-span-diagram :
    coherence-square-maps
      ( spanning-map-hom-span-diagram)
      ( left-map-span-diagram 𝒮)
      ( left-map-span-diagram 𝒯)
      ( map-domain-hom-span-diagram)
  left-square-hom-span-diagram =
    left-triangle-hom-span
      ( concat-span
        ( span-span-diagram 𝒮)
        ( map-domain-hom-span-diagram)
        ( map-codomain-hom-span-diagram))
      ( span-span-diagram 𝒯)
      ( hom-span-hom-span-diagram)

  left-hom-arrow-hom-span-diagram :
    hom-arrow (left-map-span-diagram 𝒮) (left-map-span-diagram 𝒯)
  pr1 left-hom-arrow-hom-span-diagram =
    spanning-map-hom-span-diagram
  pr1 (pr2 left-hom-arrow-hom-span-diagram) =
    map-domain-hom-span-diagram
  pr2 (pr2 left-hom-arrow-hom-span-diagram) =
    left-square-hom-span-diagram

  right-square-hom-span-diagram :
    coherence-square-maps
      ( spanning-map-hom-span-diagram)
      ( right-map-span-diagram 𝒮)
      ( right-map-span-diagram 𝒯)
      ( map-codomain-hom-span-diagram)
  right-square-hom-span-diagram =
    right-triangle-hom-span
      ( concat-span
        ( span-span-diagram 𝒮)
        ( map-domain-hom-span-diagram)
        ( map-codomain-hom-span-diagram))
      ( span-span-diagram 𝒯)
      ( hom-span-hom-span-diagram)

  right-hom-arrow-hom-span-diagram :
    hom-arrow (right-map-span-diagram 𝒮) (right-map-span-diagram 𝒯)
  pr1 right-hom-arrow-hom-span-diagram =
    spanning-map-hom-span-diagram
  pr1 (pr2 right-hom-arrow-hom-span-diagram) =
    map-codomain-hom-span-diagram
  pr2 (pr2 right-hom-arrow-hom-span-diagram) =
    right-square-hom-span-diagram

Recent changes