Initial rings
Content created by Egbert Rijke, Fredrik Bakke and Gregor Perčič.
Created on 2023-09-21.
Last modified on 2023-09-26.
module ring-theory.initial-rings where
Imports
open import category-theory.initial-objects-large-categories open import foundation.universe-levels open import ring-theory.category-of-rings open import ring-theory.rings
Idea
The initial ring is a ring R
that satisfies the
universal property that for any ring S
, the type
hom-Ring R S
of ring homomorphisms from R
to S
is
contractible.
In
elementary-number-theory.ring-of-integers
we will show that ℤ
is the initial ring.
Definitions
module _ {l : Level} (R : Ring l) where is-initial-Ring : UUω is-initial-Ring = is-initial-obj-Large-Category Ring-Large-Category R
Recent changes
- 2023-09-26. Fredrik Bakke and Egbert Rijke. Maps of categories, functor categories, and small subprecategories (#794).
- 2023-09-21. Egbert Rijke and Gregor Perčič. The classification of cyclic rings (#757).