Path algebra

Content created by Fredrik Bakke, Egbert Rijke, Raymond Baker, Jonathan Prieto-Cubides, Elisabeth Stenholm, Vojtěch Štěpančík and maybemabeline.

Created on 2022-03-10.
Last modified on 2024-07-23.

module foundation.path-algebra where
Imports
open import foundation.action-on-identifications-binary-functions
open import foundation.action-on-identifications-functions
open import foundation.binary-embeddings
open import foundation.binary-equivalences
open import foundation.identity-types
open import foundation.universe-levels

open import foundation-core.commuting-squares-of-identifications
open import foundation-core.function-types
open import foundation-core.homotopies
open import foundation-core.whiskering-identifications-concatenation

Idea

As we iterate identity type (i.e., consider the type of identifications between two identifications), the identity types gain further structure.

Identity types of identity types are types of the form p = q, where p q : x = y and x y : A. Using the homotopy interpretation of type theory, elements of such a type are often called 2-paths and a twice iterated identity type is often called a type of 2-paths.

Since 2-paths are just identifications, they have the usual operations and coherences on paths/identifications. In the context of 2-paths, this famliar concatenation operation is called vertical concatenation (see vertical-concat-Id² below). However, 2-paths have novel operations and coherences derived from the operations and coherences of the boundary 1-paths (these are p and q in the example above). Since concatenation of 1-paths is a functor, it has an induced action on paths. We call this operation horizontal concatenation (see horizontal-concat-Id² below). It comes with the standard coherences of an action on paths function, as well as coherences induced by coherences on the boundary 1-paths.

Properties

The unit laws of concatenation induce homotopies

module _
  {l : Level} {A : UU l} {a0 a1 : A}
  where

  htpy-left-unit :  (p : a0  a1)  refl {x = a0}  p) ~ id
  htpy-left-unit p = left-unit

  htpy-right-unit :  (p : a0  a1)  p  refl) ~ id
  htpy-right-unit p = right-unit

Unit laws for assoc

We give two treatments of the unit laws for the associator. One for computing with the associator, and one for coherences between the unit laws.

Computing assoc at a reflexivity

module _
  {l : Level} {A : UU l} {x y z : A}
  where

  left-unit-law-assoc :
    (p : x  y) (q : y  z) 
    assoc refl p q  refl
  left-unit-law-assoc p q = refl

  middle-unit-law-assoc :
    (p : x  y) (q : y  z) 
    assoc p refl q  right-whisker-concat right-unit q
  middle-unit-law-assoc refl q = refl

  right-unit-law-assoc :
    (p : x  y) (q : y  z) 
    assoc p q refl 
      right-unit  left-whisker-concat p (inv right-unit)
  right-unit-law-assoc refl refl = refl

Unit laws for assoc and their coherence

We use a binary naming scheme for the (higher) unit laws of the associator. For each 3-digit binary number except when all digits are 1, there is a corresponding unit law. A 0 reflects that the unit of the operator is present in the corresponding position. More generally, there is for each n-digit binary number (except all 1s) a unit law for the n-ary coherence operator.

module _
  {l : Level} {A : UU l} {x y z : A}
  where

  unit-law-assoc-011 :
    (p : x  y) (q : y  z) 
    assoc refl p q  refl
  unit-law-assoc-011 p q = refl

  unit-law-assoc-101 :
    (p : x  y) (q : y  z) 
    assoc p refl q  right-whisker-concat right-unit q
  unit-law-assoc-101 refl q = refl

  unit-law-assoc-101' :
    (p : x  y) (q : y  z) 
    inv (assoc p refl q)  right-whisker-concat (inv right-unit) q
  unit-law-assoc-101' refl q = refl

  unit-law-assoc-110 :
    (p : x  y) (q : y  z) 
    assoc p q refl  left-whisker-concat p right-unit  right-unit
  unit-law-assoc-110 refl refl = refl

  unit-law-assoc-110' :
    (p : x  y) (q : y  z) 
    inv right-unit  assoc p q refl 
    left-whisker-concat p (inv right-unit)
  unit-law-assoc-110' refl refl = refl

Properties of 2-paths

Definition of vertical and horizontal concatenation in identity types of identity types (a type of 2-paths)

vertical-concat-Id² :
  {l : Level} {A : UU l} {x y : A} {p q r : x  y}  p  q  q  r  p  r
vertical-concat-Id² α β = α  β

horizontal-concat-Id² :
  {l : Level} {A : UU l} {x y z : A} {p q : x  y} {u v : y  z} 
  p  q  u  v  p  u  q  v
horizontal-concat-Id² α β = ap-binary (_∙_) α β

Both horizontal and vertical concatenation of 2-paths are binary equivalences

is-binary-equiv-vertical-concat-Id² :
  {l : Level} {A : UU l} {x y : A} {p q r : x  y} 
  is-binary-equiv (vertical-concat-Id² {l} {A} {x} {y} {p} {q} {r})
is-binary-equiv-vertical-concat-Id² = is-binary-equiv-concat

is-binary-equiv-horizontal-concat-Id² :
  {l : Level} {A : UU l} {x y z : A} {p q : x  y} {u v : y  z} 
  is-binary-equiv (horizontal-concat-Id² {l} {A} {x} {y} {z} {p} {q} {u} {v})
is-binary-equiv-horizontal-concat-Id² =
  is-binary-emb-is-binary-equiv is-binary-equiv-concat

Unit laws for horizontal and vertical concatenation of 2-paths

left-unit-law-vertical-concat-Id² :
  {l : Level} {A : UU l} {x y : A} {p q : x  y} {β : p  q} 
  vertical-concat-Id² refl β  β
left-unit-law-vertical-concat-Id² = left-unit

right-unit-law-vertical-concat-Id² :
  {l : Level} {A : UU l} {x y : A} {p q : x  y} {α : p  q} 
  vertical-concat-Id² α refl  α
right-unit-law-vertical-concat-Id² = right-unit

compute-left-refl-horizontal-concat-Id² :
  {l : Level} {A : UU l} {x y z : A} {p : x  y} {u v : y  z} (γ : u  v) 
  horizontal-concat-Id² refl γ  left-whisker-concat p γ
compute-left-refl-horizontal-concat-Id² = left-unit-ap-binary (_∙_)

compute-right-refl-horizontal-concat-Id² :
  {l : Level} {A : UU l} {x y z : A} {p q : x  y} (α : p  q) {u : y  z} 
  horizontal-concat-Id² α refl  right-whisker-concat α u
compute-right-refl-horizontal-concat-Id² = right-unit-ap-binary (_∙_)

Horizontal concatenation satisfies an additional "2-dimensional" unit law (on both the left and right) induced by the unit laws on the boundary 1-paths.

module _
  {l : Level} {A : UU l} {x y : A} {p p' : x  y} (α : p  p')
  where

  nat-sq-right-unit-Id² :
    coherence-square-identifications
      ( horizontal-concat-Id² α refl)
      ( right-unit)
      ( right-unit)
      ( α)
  nat-sq-right-unit-Id² =
    ( ( horizontal-concat-Id² refl (inv (ap-id α))) 
      ( nat-htpy htpy-right-unit α)) 
    ( horizontal-concat-Id²
      ( inv (compute-right-refl-horizontal-concat-Id² α))
      ( refl))

  nat-sq-left-unit-Id² :
    coherence-square-identifications
      ( horizontal-concat-Id² refl α)
      ( left-unit)
      ( left-unit)
      ( α)
  nat-sq-left-unit-Id² =
    ( ( (inv (ap-id α)  (nat-htpy htpy-left-unit α))  right-unit) 
      ( inv (compute-left-refl-horizontal-concat-Id² α))) 
    ( inv right-unit)

Vertical inverses distribute over horizontal concatenation

module _
  {l : Level} {A : UU l} {x y z : A} {p q : x  y} {u v : y  z}
  where

  distributive-inv-horizontal-concat-Id² :
    (α : p  q) (β : u  v) 
    inv (horizontal-concat-Id² α β)  horizontal-concat-Id² (inv α) (inv β)
  distributive-inv-horizontal-concat-Id² refl refl =
    refl

Definition of horizontal inverse

2-paths have an induced inverse operation from the operation on boundary 1-paths

module _
  {l : Level} {A : UU l} {x y : A} {p p' : x  y}
  where

  horizontal-inv-Id² : p  p'  inv p  inv p'
  horizontal-inv-Id² = ap inv

This operation satisfies a left and right idenity induced by the inverse laws on 1-paths

module _
  {l : Level} {A : UU l} {x y : A} {p p' : x  y} (α : p  p')
  where

  nat-sq-right-inv-Id² :
    coherence-square-identifications
      ( horizontal-concat-Id² α (horizontal-inv-Id² α))
      ( right-inv p)
      ( right-inv p')
      ( refl)
  nat-sq-right-inv-Id² =
    ( ( ( horizontal-concat-Id² refl (inv (ap-const refl α))) 
        ( nat-htpy right-inv α)) 
      ( horizontal-concat-Id²
        ( ap-binary-comp-diagonal (_∙_) id inv α)
        ( refl))) 
    ( ap
      ( λ t  horizontal-concat-Id² t (horizontal-inv-Id² α)  right-inv p')
      ( ap-id α))

  nat-sq-left-inv-Id² :
    coherence-square-identifications
      ( horizontal-concat-Id² (horizontal-inv-Id² α) α)
      ( left-inv p)
      ( left-inv p')
      ( refl)
  nat-sq-left-inv-Id² =
    ( ( ( horizontal-concat-Id² refl (inv (ap-const refl α))) 
        ( nat-htpy left-inv α)) 
      ( horizontal-concat-Id²
        ( ap-binary-comp-diagonal (_∙_) inv id α)
        ( refl))) 
    ( ap
      ( λ t  (horizontal-concat-Id² (horizontal-inv-Id² α) t)  left-inv p')
      ( ap-id α))

Interchange laws for 2-paths

interchange-Id² :
  {l : Level} {A : UU l} {x y z : A} {p q r : x  y} {u v w : y  z}
  (α : p  q) (β : q  r) (γ : u  v) (δ : v  w) 
  ( horizontal-concat-Id²
    ( vertical-concat-Id² α β)
    ( vertical-concat-Id² γ δ)) 
  ( vertical-concat-Id²
    ( horizontal-concat-Id² α γ)
    ( horizontal-concat-Id² β δ))
interchange-Id² refl _ refl _ = refl

inner-interchange-Id² :
  {l : Level} {A : UU l} {x y z : A} {p r : x  y} {u v : y  z}
  (β : p  r) (γ : u  v) 
  ( horizontal-concat-Id² β γ) 
  ( vertical-concat-Id² (left-whisker-concat p γ) (right-whisker-concat β v))
inner-interchange-Id² {u = refl} β refl =
  compute-right-refl-horizontal-concat-Id² β

outer-interchange-Id² :
  {l : Level} {A : UU l} {x y z : A} {p q : x  y} {u w : y  z}
  (α : p  q) (δ : u  w) 
  ( horizontal-concat-Id² α δ) 
  ( vertical-concat-Id² (right-whisker-concat α u) (left-whisker-concat q δ))
outer-interchange-Id² {p = refl} refl δ =
  compute-left-refl-horizontal-concat-Id² δ

unit-law-α-interchange-Id² :
  {l : Level} {A : UU l} {x y z : A} {p q : x  y} (α : p  q) (u : y  z) 
  ( ( interchange-Id² α refl (refl {x = u}) refl) 
    ( right-unit  compute-right-refl-horizontal-concat-Id² α)) 
  ( ( compute-right-refl-horizontal-concat-Id² (α  refl)) 
    ( ap  s  right-whisker-concat s u) right-unit))
unit-law-α-interchange-Id² refl _ = refl

unit-law-β-interchange-Id² :
  {l : Level} {A : UU l} {x y z : A} {p q : x  y} (β : p  q) (u : y  z) 
  interchange-Id² refl β (refl {x = u}) refl  refl
unit-law-β-interchange-Id² refl _ = refl

unit-law-γ-interchange-Id² :
  {l : Level} {A : UU l} {x y z : A} (p : x  y) {u v : y  z} (γ : u  v) 
  ( ( interchange-Id² (refl {x = p}) refl γ refl) 
    ( right-unit  compute-left-refl-horizontal-concat-Id² γ)) 
  ( ( compute-left-refl-horizontal-concat-Id² (γ  refl)) 
    ( ap (left-whisker-concat p) right-unit))
unit-law-γ-interchange-Id² _ refl = refl

unit-law-δ-interchange-Id² :
  {l : Level} {A : UU l} {x y z : A} (p : x  y) {u v : y  z} (δ : u  v) 
  interchange-Id² (refl {x = p}) refl refl δ  refl
unit-law-δ-interchange-Id² _ refl = refl

Properties of 3-paths

3-paths are identifications of 2-paths. In symbols, a type of 3-paths is a type of the form α = β where α β : p = q and p q : x = y.

Concatenation in a type of 3-paths

Like with 2-paths, 3-paths have the standard operations on equalties, plus the operations induced by the operations on 1-paths. But 3-paths also have operations induced by those on 2-paths. Thus there are three ways to concatenate in triple identity types. We name the three concatenations of triple identity types x-, y-, and z-concatenation, after the standard names for the three axis in 3-dimensional space.

The x-concatenation operation corresponds the standard concatenation of equalities.

x-concat-Id³ :
  {l : Level} {A : UU l} {x y : A} {p q : x  y} {α β γ : p  q} 
  α  β  β  γ  α  γ
x-concat-Id³ σ τ = vertical-concat-Id² σ τ

The y-concatenation operation corresponds the operation induced by the concatenation on 1-paths.

y-concat-Id³ :
  {l : Level} {A : UU l} {x y : A} {p q r : x  y} {α β : p  q}
  {γ δ : q  r}  α  β  γ  δ  (α  γ)  (β  δ)
y-concat-Id³ = horizontal-concat-Id²

The z-concatenation operation corresponds the concatenation induced by the horizontal concatenation on 2-paths.

z-concat-Id³ :
  {l : Level} {A : UU l} {x y z : A} {p q : x  y} {u v : y  z}
  {α β : p  q} {γ δ : u  v} 
  α  β  γ  δ  horizontal-concat-Id² α γ  horizontal-concat-Id² β δ
z-concat-Id³ σ τ = ap-binary horizontal-concat-Id² σ τ

Unit laws for the concatenation operations on 3-paths

left-unit-law-x-concat-Id³ :
  {l : Level} {A : UU l} {x y : A} {p q : x  y} {α β : p  q} {σ : α  β} 
  x-concat-Id³ refl σ  σ
left-unit-law-x-concat-Id³ = left-unit-law-vertical-concat-Id²

right-unit-law-x-concat-Id³ :
  {l : Level} {A : UU l} {x y : A} {p q : x  y} {α β : p  q} {τ : α  β} 
  x-concat-Id³ τ refl  τ
right-unit-law-x-concat-Id³ = right-unit-law-vertical-concat-Id²

left-unit-law-y-concat-Id³ :
  {l : Level} {A : UU l} {x y : A} {p q r : x  y} {α : p  q} {γ δ : q  r}
  {τ : γ  δ} 
  y-concat-Id³ (refl {x = α}) τ  left-whisker-concat α τ
left-unit-law-y-concat-Id³ {τ = τ} = compute-left-refl-horizontal-concat-Id² τ

right-unit-law-y-concat-Id³ :
  {l : Level} {A : UU l} {x y : A} {p q r : x  y} {α β : p  q} {γ : q  r}
  {σ : α  β} 
  y-concat-Id³ σ (refl {x = γ})  right-whisker-concat σ γ
right-unit-law-y-concat-Id³ {σ = σ} = compute-right-refl-horizontal-concat-Id² σ

left-unit-law-z-concat-Id³ :
  {l : Level} {A : UU l} {x y z : A} {p q : x  y} {u v : y  z}
  {α : p  q} {γ δ : u  v} (τ : γ  δ) 
  z-concat-Id³ (refl {x = α}) τ  ap (horizontal-concat-Id² α) τ
left-unit-law-z-concat-Id³ {α = α} =
  left-unit-ap-binary horizontal-concat-Id² {α}

right-unit-law-z-concat-Id³ :
  {l : Level} {A : UU l} {x y z : A} {p q : x  y} {u v : y  z}
  {α β : p  q} {γ : u  v} (σ : α  β) 
  z-concat-Id³ σ (refl {x = γ})  ap  ω  horizontal-concat-Id² ω γ) σ
right-unit-law-z-concat-Id³ σ =
  right-unit-ap-binary horizontal-concat-Id² σ

Interchange laws for 3-paths for the concatenation operations on 3-paths

interchange-x-y-concat-Id³ :
  {l : Level} {A : UU l} {x y : A} {p q r : x  y} {α β γ : p  q}
  {δ ε ζ : q  r} (σ : α  β) (τ : β  γ) (υ : δ  ε) (ϕ : ε  ζ) 
  ( y-concat-Id³ (x-concat-Id³ σ τ) (x-concat-Id³ υ ϕ)) 
  ( x-concat-Id³ (y-concat-Id³ σ υ) (y-concat-Id³ τ ϕ))
interchange-x-y-concat-Id³ = interchange-Id²

interchange-x-z-concat-Id³ :
  {l : Level} {A : UU l} {x y z : A} {p q : x  y} {u v : y  z}
  {α β γ : p  q} {δ ε ζ : u  v} (σ : α  β) (τ : β  γ) (υ : δ  ε)
  (ϕ : ε  ζ) 
  ( z-concat-Id³ (x-concat-Id³ σ τ) (x-concat-Id³ υ ϕ)) 
  ( x-concat-Id³ (z-concat-Id³ σ υ) (z-concat-Id³ τ ϕ))
interchange-x-z-concat-Id³ refl τ refl ϕ = refl

interchange-y-z-concat-Id³ :
  {l : Level} {A : UU l} {x y z : A} {p q r : x  y} {u v w : y  z}
  {α β : p  q} {γ δ : q  r} {ε ζ : u  v} {η θ : v  w}
  (σ : α  β) (τ : γ  δ) (υ : ε  ζ) (ϕ : η  θ) 
  ( ( z-concat-Id³ (y-concat-Id³ σ τ) (y-concat-Id³ υ ϕ)) 
    ( interchange-Id² β δ ζ θ)) 
  ( ( interchange-Id² α γ ε η) 
    ( y-concat-Id³ (z-concat-Id³ σ υ) (z-concat-Id³ τ ϕ)))
interchange-y-z-concat-Id³ refl refl refl refl = inv right-unit

Properties of 4-paths

The pattern for concatenation of 1, 2, and 3-paths continues. There are four ways to concatenate in quadruple identity types. We name the three nonstandard concatenations in quadruple identity types i-, j-, and k-concatenation, after the standard names for the quaternions i, j, and k.

Concatenation of four paths

The standard concatenation

concat-Id⁴ :
  {l : Level} {A : UU l} {x y : A} {p q : x  y} {α β : p  q}
  {r s t : α  β}  r  s  s  t  r  t
concat-Id⁴ σ τ = x-concat-Id³ σ τ

Concatenation induced by concatenation of boundary 1-paths

i-concat-Id⁴ :
  {l : Level} {A : UU l} {x y : A} {p q : x  y} {α β γ : p  q} 
  {s s' : α  β} (σ : s  s') {t t' : β  γ} (τ : t  t') 
  x-concat-Id³ s t  x-concat-Id³ s' t'
i-concat-Id⁴ σ τ = y-concat-Id³ σ τ

Concatenation induced by concatenation of boundary 2-paths

j-concat-Id⁴ :
  {l : Level} {A : UU l} {x y : A} {p q r : x  y} {α β : p  q}
  {γ δ : q  r} {s s' : α  β} (σ : s  s') {t t' : γ  δ} (τ : t  t') 
  y-concat-Id³ s t  y-concat-Id³ s' t'
j-concat-Id⁴ σ τ = z-concat-Id³ σ τ

Concatenation induced by concatenation of boundary 3-paths

k-concat-Id⁴ :
  {l : Level} {A : UU l} {x y z : A} {p q : x  y} {u v : y  z}
  {α β : p  q} {γ δ : u  v} {s s' : α  β} (σ : s  s') {t t' : γ  δ}
  (τ : t  t')  z-concat-Id³ s t  z-concat-Id³ s' t'
k-concat-Id⁴ σ τ = ap-binary  m n  z-concat-Id³ m n) σ τ

Commuting cubes

module _
  {l : Level} {A : UU l} {x000 x001 x010 x100 x011 x101 x110 x111 : A}
  where

  coherence-cube-identifications :
    (p000̂ : x000  x001) (p00̂0 : x000  x010) (p0̂00 : x000  x100)
    (p00̂1 : x001  x011) (p0̂01 : x001  x101) (p010̂ : x010  x011)
    (p0̂10 : x010  x110) (p100̂ : x100  x101) (p10̂0 : x100  x110)
    (p0̂11 : x011  x111) (p10̂1 : x101  x111) (p110̂ : x110  x111)
    (p00̂0̂ : coherence-square-identifications p00̂0 p000̂ p010̂ p00̂1)
    (p0̂00̂ : coherence-square-identifications p0̂00 p000̂ p100̂ p0̂01)
    (p0̂0̂0 : coherence-square-identifications p0̂00 p00̂0 p10̂0 p0̂10)
    (p0̂0̂1 : coherence-square-identifications p0̂01 p00̂1 p10̂1 p0̂11)
    (p0̂10̂ : coherence-square-identifications p0̂10 p010̂ p110̂ p0̂11)
    (p10̂0̂ : coherence-square-identifications p10̂0 p100̂ p110̂ p10̂1)  UU l
  coherence-cube-identifications
    p000̂ p00̂0 p0̂00 p00̂1 p0̂01 p010̂ p0̂10 p100̂ p10̂0 p0̂11 p10̂1 p110̂
    p00̂0̂ p0̂00̂ p0̂0̂0 p0̂0̂1 p0̂10̂ p10̂0̂ =
    Id
      ( ( right-whisker-concat p00̂0̂ p0̂11) 
        ( ( assoc p00̂0 p010̂ p0̂11) 
          ( ( left-whisker-concat p00̂0 p0̂10̂) 
            ( ( inv (assoc p00̂0 p0̂10 p110̂)) 
              ( ( right-whisker-concat p0̂0̂0 p110̂) 
                ( assoc p0̂00 p10̂0 p110̂))))))
      ( ( assoc p000̂ p00̂1 p0̂11) 
        ( ( left-whisker-concat p000̂ p0̂0̂1) 
          ( ( inv (assoc p000̂ p0̂01 p10̂1)) 
            ( ( right-whisker-concat p0̂00̂ p10̂1) 
              ( ( assoc p0̂00 p100̂ p10̂1) 
                ( ( left-whisker-concat p0̂00 p10̂0̂)))))))

Recent changes