Path algebra
Content created by Fredrik Bakke, Egbert Rijke, Raymond Baker, Jonathan Prieto-Cubides, Elisabeth Stenholm, Vojtěch Štěpančík and maybemabeline.
Created on 2022-03-10.
Last modified on 2024-11-05.
module foundation.path-algebra where
Imports
open import foundation.action-on-identifications-binary-functions open import foundation.action-on-identifications-functions open import foundation.binary-embeddings open import foundation.binary-equivalences open import foundation.identity-types open import foundation.universe-levels open import foundation-core.commuting-squares-of-identifications open import foundation-core.function-types open import foundation-core.homotopies open import foundation-core.whiskering-identifications-concatenation
Idea
As we iterate identity type (i.e., consider the type of identifications between two identifications), the identity types gain further structure.
Identity types of identity types are types of the form p = q
, where
p q : x = y
and x y : A
. Using the homotopy interpretation of type theory,
elements of such a type are often called 2-paths and a twice iterated identity
type is often called a type of 2-paths.
Since 2-paths are just identifications, they have the usual operations and
coherences on paths/identifications. In the context of 2-paths, this famliar
concatenation operation is called vertical concatenation (see
vertical-concat-Id²
below). However, 2-paths have novel operations and
coherences derived from the operations and coherences of the boundary 1-paths
(these are p
and q
in the example above). Since concatenation of 1-paths is
a functor, it has an induced action on paths. We call this operation horizontal
concatenation (see horizontal-concat-Id²
below). It comes with the standard
coherences of an action on paths function, as well as coherences induced by
coherences on the boundary 1-paths.
Properties
The unit laws of concatenation induce homotopies
module _ {l : Level} {A : UU l} {a0 a1 : A} where htpy-left-unit : (λ (p : a0 = a1) → refl {x = a0} ∙ p) ~ id htpy-left-unit p = left-unit htpy-right-unit : (λ (p : a0 = a1) → p ∙ refl) ~ id htpy-right-unit p = right-unit
Unit laws for assoc
We give two treatments of the unit laws for the associator. One for computing with the associator, and one for coherences between the unit laws.
Computing assoc
at a reflexivity
module _ {l : Level} {A : UU l} {x y z : A} where left-unit-law-assoc : (p : x = y) (q : y = z) → assoc refl p q = refl left-unit-law-assoc p q = refl middle-unit-law-assoc : (p : x = y) (q : y = z) → assoc p refl q = right-whisker-concat right-unit q middle-unit-law-assoc refl q = refl right-unit-law-assoc : (p : x = y) (q : y = z) → assoc p q refl = right-unit ∙ left-whisker-concat p (inv right-unit) right-unit-law-assoc refl refl = refl
Unit laws for assoc
and their coherence
We use a binary naming scheme for the (higher) unit laws of the associator. For
each 3-digit binary number except when all digits are 1
, there is a
corresponding unit law. A 0
reflects that the unit of the operator is present
in the corresponding position. More generally, there is for each n
-digit
binary number (except all 1
s) a unit law for the n
-ary coherence operator.
module _ {l : Level} {A : UU l} {x y z : A} where unit-law-assoc-011 : (p : x = y) (q : y = z) → assoc refl p q = refl unit-law-assoc-011 p q = refl unit-law-assoc-101 : (p : x = y) (q : y = z) → assoc p refl q = right-whisker-concat right-unit q unit-law-assoc-101 refl q = refl unit-law-assoc-101' : (p : x = y) (q : y = z) → inv (assoc p refl q) = right-whisker-concat (inv right-unit) q unit-law-assoc-101' refl q = refl unit-law-assoc-110 : (p : x = y) (q : y = z) → assoc p q refl ∙ left-whisker-concat p right-unit = right-unit unit-law-assoc-110 refl refl = refl unit-law-assoc-110' : (p : x = y) (q : y = z) → inv right-unit ∙ assoc p q refl = left-whisker-concat p (inv right-unit) unit-law-assoc-110' refl refl = refl
Second-order associators
module _ {l : Level} {A : UU l} {x y z u v : A} (p : x = y) (q : y = z) (r : z = u) (s : u = v) where assoc²-1 : ((p ∙ q) ∙ r) ∙ s = p ∙ ((q ∙ r) ∙ s) assoc²-1 = ap (_∙ s) (assoc p q r) ∙ assoc p (q ∙ r) s assoc²-2 : (p ∙ (q ∙ r)) ∙ s = p ∙ (q ∙ (r ∙ s)) assoc²-2 = assoc p (q ∙ r) s ∙ ap (p ∙_) (assoc q r s) assoc²-3 : ((p ∙ q) ∙ r) ∙ s = p ∙ (q ∙ (r ∙ s)) assoc²-3 = assoc (p ∙ q) r s ∙ assoc p q (r ∙ s) assoc²-4 : (p ∙ q) ∙ (r ∙ s) = p ∙ ((q ∙ r) ∙ s) assoc²-4 = assoc p q (r ∙ s) ∙ ap (p ∙_) (inv (assoc q r s)) assoc²-5 : (p ∙ q) ∙ (r ∙ s) = (p ∙ (q ∙ r)) ∙ s assoc²-5 = inv (assoc (p ∙ q) r s) ∙ ap (_∙ s) (assoc p q r)
Properties of 2-paths
Definition of vertical and horizontal concatenation in identity types of identity types (a type of 2-paths)
vertical-concat-Id² : {l : Level} {A : UU l} {x y : A} {p q r : x = y} → p = q → q = r → p = r vertical-concat-Id² α β = α ∙ β horizontal-concat-Id² : {l : Level} {A : UU l} {x y z : A} {p q : x = y} {u v : y = z} → p = q → u = v → p ∙ u = q ∙ v horizontal-concat-Id² α β = ap-binary (_∙_) α β
Both horizontal and vertical concatenation of 2-paths are binary equivalences
is-binary-equiv-vertical-concat-Id² : {l : Level} {A : UU l} {x y : A} {p q r : x = y} → is-binary-equiv (vertical-concat-Id² {l} {A} {x} {y} {p} {q} {r}) is-binary-equiv-vertical-concat-Id² = is-binary-equiv-concat is-binary-equiv-horizontal-concat-Id² : {l : Level} {A : UU l} {x y z : A} {p q : x = y} {u v : y = z} → is-binary-equiv (horizontal-concat-Id² {l} {A} {x} {y} {z} {p} {q} {u} {v}) is-binary-equiv-horizontal-concat-Id² = is-binary-emb-is-binary-equiv is-binary-equiv-concat
Unit laws for horizontal and vertical concatenation of 2-paths
left-unit-law-vertical-concat-Id² : {l : Level} {A : UU l} {x y : A} {p q : x = y} {β : p = q} → vertical-concat-Id² refl β = β left-unit-law-vertical-concat-Id² = left-unit right-unit-law-vertical-concat-Id² : {l : Level} {A : UU l} {x y : A} {p q : x = y} {α : p = q} → vertical-concat-Id² α refl = α right-unit-law-vertical-concat-Id² = right-unit compute-left-refl-horizontal-concat-Id² : {l : Level} {A : UU l} {x y z : A} {p : x = y} {u v : y = z} (γ : u = v) → horizontal-concat-Id² refl γ = left-whisker-concat p γ compute-left-refl-horizontal-concat-Id² = left-unit-ap-binary (_∙_) compute-right-refl-horizontal-concat-Id² : {l : Level} {A : UU l} {x y z : A} {p q : x = y} (α : p = q) {u : y = z} → horizontal-concat-Id² α refl = right-whisker-concat α u compute-right-refl-horizontal-concat-Id² = right-unit-ap-binary (_∙_)
Horizontal concatenation satisfies an additional “2-dimensional” unit law (on both the left and right) induced by the unit laws on the boundary 1-paths.
module _ {l : Level} {A : UU l} {x y : A} {p p' : x = y} (α : p = p') where nat-sq-right-unit-Id² : coherence-square-identifications ( horizontal-concat-Id² α refl) ( right-unit) ( right-unit) ( α) nat-sq-right-unit-Id² = ( ( horizontal-concat-Id² refl (inv (ap-id α))) ∙ ( nat-htpy htpy-right-unit α)) ∙ ( horizontal-concat-Id² ( inv (compute-right-refl-horizontal-concat-Id² α)) ( refl)) nat-sq-left-unit-Id² : coherence-square-identifications ( horizontal-concat-Id² refl α) ( left-unit) ( left-unit) ( α) nat-sq-left-unit-Id² = ( ( (inv (ap-id α) ∙ (nat-htpy htpy-left-unit α)) ∙ right-unit) ∙ ( inv (compute-left-refl-horizontal-concat-Id² α))) ∙ ( inv right-unit)
Vertical inverses distribute over horizontal concatenation
module _ {l : Level} {A : UU l} {x y z : A} {p q : x = y} {u v : y = z} where distributive-inv-horizontal-concat-Id² : (α : p = q) (β : u = v) → inv (horizontal-concat-Id² α β) = horizontal-concat-Id² (inv α) (inv β) distributive-inv-horizontal-concat-Id² refl refl = refl
Definition of horizontal inverse
2-paths have an induced inverse operation from the operation on boundary 1-paths
module _ {l : Level} {A : UU l} {x y : A} {p p' : x = y} where horizontal-inv-Id² : p = p' → inv p = inv p' horizontal-inv-Id² = ap inv
This operation satisfies a left and right idenity induced by the inverse laws on 1-paths
module _ {l : Level} {A : UU l} {x y : A} {p p' : x = y} (α : p = p') where nat-sq-right-inv-Id² : coherence-square-identifications ( horizontal-concat-Id² α (horizontal-inv-Id² α)) ( right-inv p) ( right-inv p') ( refl) nat-sq-right-inv-Id² = ( ( ( horizontal-concat-Id² refl (inv (ap-const refl α))) ∙ ( nat-htpy right-inv α)) ∙ ( horizontal-concat-Id² ( ap-binary-comp-diagonal (_∙_) id inv α) ( refl))) ∙ ( ap ( λ t → horizontal-concat-Id² t (horizontal-inv-Id² α) ∙ right-inv p') ( ap-id α)) nat-sq-left-inv-Id² : coherence-square-identifications ( horizontal-concat-Id² (horizontal-inv-Id² α) α) ( left-inv p) ( left-inv p') ( refl) nat-sq-left-inv-Id² = ( ( ( horizontal-concat-Id² refl (inv (ap-const refl α))) ∙ ( nat-htpy left-inv α)) ∙ ( horizontal-concat-Id² ( ap-binary-comp-diagonal (_∙_) inv id α) ( refl))) ∙ ( ap ( λ t → (horizontal-concat-Id² (horizontal-inv-Id² α) t) ∙ left-inv p') ( ap-id α))
Interchange laws for 2-paths
interchange-Id² : {l : Level} {A : UU l} {x y z : A} {p q r : x = y} {u v w : y = z} (α : p = q) (β : q = r) (γ : u = v) (δ : v = w) → ( horizontal-concat-Id² ( vertical-concat-Id² α β) ( vertical-concat-Id² γ δ)) = ( vertical-concat-Id² ( horizontal-concat-Id² α γ) ( horizontal-concat-Id² β δ)) interchange-Id² refl _ refl _ = refl inner-interchange-Id² : {l : Level} {A : UU l} {x y z : A} {p r : x = y} {u v : y = z} (β : p = r) (γ : u = v) → ( horizontal-concat-Id² β γ) = ( vertical-concat-Id² (left-whisker-concat p γ) (right-whisker-concat β v)) inner-interchange-Id² {u = refl} β refl = compute-right-refl-horizontal-concat-Id² β outer-interchange-Id² : {l : Level} {A : UU l} {x y z : A} {p q : x = y} {u w : y = z} (α : p = q) (δ : u = w) → ( horizontal-concat-Id² α δ) = ( vertical-concat-Id² (right-whisker-concat α u) (left-whisker-concat q δ)) outer-interchange-Id² {p = refl} refl δ = compute-left-refl-horizontal-concat-Id² δ unit-law-α-interchange-Id² : {l : Level} {A : UU l} {x y z : A} {p q : x = y} (α : p = q) (u : y = z) → ( ( interchange-Id² α refl (refl {x = u}) refl) ∙ ( right-unit ∙ compute-right-refl-horizontal-concat-Id² α)) = ( ( compute-right-refl-horizontal-concat-Id² (α ∙ refl)) ∙ ( ap (λ s → right-whisker-concat s u) right-unit)) unit-law-α-interchange-Id² refl _ = refl unit-law-β-interchange-Id² : {l : Level} {A : UU l} {x y z : A} {p q : x = y} (β : p = q) (u : y = z) → interchange-Id² refl β (refl {x = u}) refl = refl unit-law-β-interchange-Id² refl _ = refl unit-law-γ-interchange-Id² : {l : Level} {A : UU l} {x y z : A} (p : x = y) {u v : y = z} (γ : u = v) → ( ( interchange-Id² (refl {x = p}) refl γ refl) ∙ ( right-unit ∙ compute-left-refl-horizontal-concat-Id² γ)) = ( ( compute-left-refl-horizontal-concat-Id² (γ ∙ refl)) ∙ ( ap (left-whisker-concat p) right-unit)) unit-law-γ-interchange-Id² _ refl = refl unit-law-δ-interchange-Id² : {l : Level} {A : UU l} {x y z : A} (p : x = y) {u v : y = z} (δ : u = v) → interchange-Id² (refl {x = p}) refl refl δ = refl unit-law-δ-interchange-Id² _ refl = refl
Properties of 3-paths
3-paths are identifications of 2-paths. In symbols, a type of 3-paths is a type
of the form α = β
where α β : p = q
and p q : x = y
.
Concatenation in a type of 3-paths
Like with 2-paths, 3-paths have the standard operations on equalties, plus the operations induced by the operations on 1-paths. But 3-paths also have operations induced by those on 2-paths. Thus there are three ways to concatenate in triple identity types. We name the three concatenations of triple identity types x-, y-, and z-concatenation, after the standard names for the three axis in 3-dimensional space.
The x-concatenation operation corresponds the standard concatenation of equalities.
x-concat-Id³ : {l : Level} {A : UU l} {x y : A} {p q : x = y} {α β γ : p = q} → α = β → β = γ → α = γ x-concat-Id³ σ τ = vertical-concat-Id² σ τ
The y-concatenation operation corresponds the operation induced by the concatenation on 1-paths.
y-concat-Id³ : {l : Level} {A : UU l} {x y : A} {p q r : x = y} {α β : p = q} {γ δ : q = r} → α = β → γ = δ → (α ∙ γ) = (β ∙ δ) y-concat-Id³ = horizontal-concat-Id²
The z-concatenation operation corresponds the concatenation induced by the horizontal concatenation on 2-paths.
z-concat-Id³ : {l : Level} {A : UU l} {x y z : A} {p q : x = y} {u v : y = z} {α β : p = q} {γ δ : u = v} → α = β → γ = δ → horizontal-concat-Id² α γ = horizontal-concat-Id² β δ z-concat-Id³ σ τ = ap-binary horizontal-concat-Id² σ τ
Unit laws for the concatenation operations on 3-paths
left-unit-law-x-concat-Id³ : {l : Level} {A : UU l} {x y : A} {p q : x = y} {α β : p = q} {σ : α = β} → x-concat-Id³ refl σ = σ left-unit-law-x-concat-Id³ = left-unit-law-vertical-concat-Id² right-unit-law-x-concat-Id³ : {l : Level} {A : UU l} {x y : A} {p q : x = y} {α β : p = q} {τ : α = β} → x-concat-Id³ τ refl = τ right-unit-law-x-concat-Id³ = right-unit-law-vertical-concat-Id² left-unit-law-y-concat-Id³ : {l : Level} {A : UU l} {x y : A} {p q r : x = y} {α : p = q} {γ δ : q = r} {τ : γ = δ} → y-concat-Id³ (refl {x = α}) τ = left-whisker-concat α τ left-unit-law-y-concat-Id³ {τ = τ} = compute-left-refl-horizontal-concat-Id² τ right-unit-law-y-concat-Id³ : {l : Level} {A : UU l} {x y : A} {p q r : x = y} {α β : p = q} {γ : q = r} {σ : α = β} → y-concat-Id³ σ (refl {x = γ}) = right-whisker-concat σ γ right-unit-law-y-concat-Id³ {σ = σ} = compute-right-refl-horizontal-concat-Id² σ left-unit-law-z-concat-Id³ : {l : Level} {A : UU l} {x y z : A} {p q : x = y} {u v : y = z} {α : p = q} {γ δ : u = v} (τ : γ = δ) → z-concat-Id³ (refl {x = α}) τ = ap (horizontal-concat-Id² α) τ left-unit-law-z-concat-Id³ {α = α} = left-unit-ap-binary horizontal-concat-Id² {α} right-unit-law-z-concat-Id³ : {l : Level} {A : UU l} {x y z : A} {p q : x = y} {u v : y = z} {α β : p = q} {γ : u = v} (σ : α = β) → z-concat-Id³ σ (refl {x = γ}) = ap (λ ω → horizontal-concat-Id² ω γ) σ right-unit-law-z-concat-Id³ σ = right-unit-ap-binary horizontal-concat-Id² σ
Interchange laws for 3-paths for the concatenation operations on 3-paths
interchange-x-y-concat-Id³ : {l : Level} {A : UU l} {x y : A} {p q r : x = y} {α β γ : p = q} {δ ε ζ : q = r} (σ : α = β) (τ : β = γ) (υ : δ = ε) (ϕ : ε = ζ) → ( y-concat-Id³ (x-concat-Id³ σ τ) (x-concat-Id³ υ ϕ)) = ( x-concat-Id³ (y-concat-Id³ σ υ) (y-concat-Id³ τ ϕ)) interchange-x-y-concat-Id³ = interchange-Id² interchange-x-z-concat-Id³ : {l : Level} {A : UU l} {x y z : A} {p q : x = y} {u v : y = z} {α β γ : p = q} {δ ε ζ : u = v} (σ : α = β) (τ : β = γ) (υ : δ = ε) (ϕ : ε = ζ) → ( z-concat-Id³ (x-concat-Id³ σ τ) (x-concat-Id³ υ ϕ)) = ( x-concat-Id³ (z-concat-Id³ σ υ) (z-concat-Id³ τ ϕ)) interchange-x-z-concat-Id³ refl τ refl ϕ = refl interchange-y-z-concat-Id³ : {l : Level} {A : UU l} {x y z : A} {p q r : x = y} {u v w : y = z} {α β : p = q} {γ δ : q = r} {ε ζ : u = v} {η θ : v = w} (σ : α = β) (τ : γ = δ) (υ : ε = ζ) (ϕ : η = θ) → ( ( z-concat-Id³ (y-concat-Id³ σ τ) (y-concat-Id³ υ ϕ)) ∙ ( interchange-Id² β δ ζ θ)) = ( ( interchange-Id² α γ ε η) ∙ ( y-concat-Id³ (z-concat-Id³ σ υ) (z-concat-Id³ τ ϕ))) interchange-y-z-concat-Id³ refl refl refl refl = inv right-unit
Properties of 4-paths
The pattern for concatenation of 1, 2, and 3-paths continues. There are four
ways to concatenate in quadruple identity types. We name the three nonstandard
concatenations in quadruple identity types i
-, j
-, and k
-concatenation,
after the standard names for the quaternions i
, j
, and k
.
Concatenation of four paths
The standard concatenation
concat-Id⁴ : {l : Level} {A : UU l} {x y : A} {p q : x = y} {α β : p = q} {r s t : α = β} → r = s → s = t → r = t concat-Id⁴ σ τ = x-concat-Id³ σ τ
Concatenation induced by concatenation of boundary 1-paths
i-concat-Id⁴ : {l : Level} {A : UU l} {x y : A} {p q : x = y} {α β γ : p = q} → {s s' : α = β} (σ : s = s') {t t' : β = γ} (τ : t = t') → x-concat-Id³ s t = x-concat-Id³ s' t' i-concat-Id⁴ σ τ = y-concat-Id³ σ τ
Concatenation induced by concatenation of boundary 2-paths
j-concat-Id⁴ : {l : Level} {A : UU l} {x y : A} {p q r : x = y} {α β : p = q} {γ δ : q = r} {s s' : α = β} (σ : s = s') {t t' : γ = δ} (τ : t = t') → y-concat-Id³ s t = y-concat-Id³ s' t' j-concat-Id⁴ σ τ = z-concat-Id³ σ τ
Concatenation induced by concatenation of boundary 3-paths
k-concat-Id⁴ : {l : Level} {A : UU l} {x y z : A} {p q : x = y} {u v : y = z} {α β : p = q} {γ δ : u = v} {s s' : α = β} (σ : s = s') {t t' : γ = δ} (τ : t = t') → z-concat-Id³ s t = z-concat-Id³ s' t' k-concat-Id⁴ σ τ = ap-binary (λ m n → z-concat-Id³ m n) σ τ
Commuting cubes
module _ {l : Level} {A : UU l} {x000 x001 x010 x100 x011 x101 x110 x111 : A} where coherence-cube-identifications : (p000̂ : x000 = x001) (p00̂0 : x000 = x010) (p0̂00 : x000 = x100) (p00̂1 : x001 = x011) (p0̂01 : x001 = x101) (p010̂ : x010 = x011) (p0̂10 : x010 = x110) (p100̂ : x100 = x101) (p10̂0 : x100 = x110) (p0̂11 : x011 = x111) (p10̂1 : x101 = x111) (p110̂ : x110 = x111) (p00̂0̂ : coherence-square-identifications p00̂0 p000̂ p010̂ p00̂1) (p0̂00̂ : coherence-square-identifications p0̂00 p000̂ p100̂ p0̂01) (p0̂0̂0 : coherence-square-identifications p0̂00 p00̂0 p10̂0 p0̂10) (p0̂0̂1 : coherence-square-identifications p0̂01 p00̂1 p10̂1 p0̂11) (p0̂10̂ : coherence-square-identifications p0̂10 p010̂ p110̂ p0̂11) (p10̂0̂ : coherence-square-identifications p10̂0 p100̂ p110̂ p10̂1) → UU l coherence-cube-identifications p000̂ p00̂0 p0̂00 p00̂1 p0̂01 p010̂ p0̂10 p100̂ p10̂0 p0̂11 p10̂1 p110̂ p00̂0̂ p0̂00̂ p0̂0̂0 p0̂0̂1 p0̂10̂ p10̂0̂ = Id ( ( right-whisker-concat p00̂0̂ p0̂11) ∙ ( ( assoc p00̂0 p010̂ p0̂11) ∙ ( ( left-whisker-concat p00̂0 p0̂10̂) ∙ ( ( inv (assoc p00̂0 p0̂10 p110̂)) ∙ ( ( right-whisker-concat p0̂0̂0 p110̂) ∙ ( assoc p0̂00 p10̂0 p110̂)))))) ( ( assoc p000̂ p00̂1 p0̂11) ∙ ( ( left-whisker-concat p000̂ p0̂0̂1) ∙ ( ( inv (assoc p000̂ p0̂01 p10̂1)) ∙ ( ( right-whisker-concat p0̂00̂ p10̂1) ∙ ( ( assoc p0̂00 p100̂ p10̂1) ∙ ( ( left-whisker-concat p0̂00 p10̂0̂)))))))
Recent changes
- 2024-11-05. Fredrik Bakke. Some results about path-cosplit maps (#1167).
- 2024-07-23. Raymond Baker. Eckmann-Hilton Updates (#1133).
- 2024-04-17. Fredrik Bakke. Splitting idempotents (#1105).
- 2024-02-19. Fredrik Bakke. Higher computational properties of computational identity types (#1026).
- 2024-02-19. Fredrik Bakke. Additions for coherently invertible maps (#1024).