Operations on cospans
Content created by Fredrik Bakke.
Created on 2026-02-12.
Last modified on 2026-02-12.
module foundation.operations-cospans where open import foundation-core.operations-cospans public
Imports
open import foundation.cospans open import foundation.dependent-pair-types open import foundation.equivalences-arrows open import foundation.morphisms-arrows open import foundation.universe-levels open import foundation-core.function-types
Idea
This file contains some further operations on cospans
that produce new cospans from given cospans and possibly other data. Previous
operations on cospans were defined in
foundation-core.operations-cospans.
Definitions
Concatenating cospans and equivalences of arrows on the left
Consider a cospan s given by
f g
A ------> S <------ B
and an equivalence of arrows
h : equiv-arrow f' f as indicated in the diagram
f g
A ------> S <------ B.
| |
h₀ | ≃ ≃ | h₁
∨ ∨
A' -----> S'
f'
Then we obtain a cospan A' --> S' <-- B.
module _ {l1 l2 l3 l4 l5 : Level} {A : UU l1} {B : UU l2} (s : cospan l3 A B) {S' : UU l4} {A' : UU l5} (f' : A' → S') (h : equiv-arrow (left-map-cospan s) f') where cospanning-type-left-concat-equiv-arrow-cospan : UU l4 cospanning-type-left-concat-equiv-arrow-cospan = S' left-map-left-concat-equiv-arrow-cospan : A' → cospanning-type-left-concat-equiv-arrow-cospan left-map-left-concat-equiv-arrow-cospan = f' right-map-left-concat-equiv-arrow-cospan : B → cospanning-type-left-concat-equiv-arrow-cospan right-map-left-concat-equiv-arrow-cospan = map-codomain-equiv-arrow (left-map-cospan s) f' h ∘ right-map-cospan s left-concat-equiv-arrow-cospan : cospan l4 A' B pr1 left-concat-equiv-arrow-cospan = cospanning-type-left-concat-equiv-arrow-cospan pr1 (pr2 left-concat-equiv-arrow-cospan) = left-map-left-concat-equiv-arrow-cospan pr2 (pr2 left-concat-equiv-arrow-cospan) = right-map-left-concat-equiv-arrow-cospan
Concatenating cospans and equivalences of arrows on the right
Consider a cospan s given by
f g
A ------> S <------ B
and an equivalence of arrows h : equiv-arrow g' g as indicated in the diagram
f g
A ------> S <------ B
| |
h₀ | ≃ ≃ | h₁
∨ ∨
S' <----- B'.
g'
Then we obtain a cospan A --> S' <-- B'.
module _ {l1 l2 l3 l4 l5 : Level} {A : UU l1} {B : UU l2} (s : cospan l3 A B) {S' : UU l4} {B' : UU l5} (g' : B' → S') (h : equiv-arrow (right-map-cospan s) g') where cospanning-type-right-concat-equiv-arrow-cospan : UU l4 cospanning-type-right-concat-equiv-arrow-cospan = S' left-map-right-concat-equiv-arrow-cospan : A → cospanning-type-right-concat-equiv-arrow-cospan left-map-right-concat-equiv-arrow-cospan = map-codomain-equiv-arrow (right-map-cospan s) g' h ∘ left-map-cospan s right-map-right-concat-equiv-arrow-cospan : B' → cospanning-type-right-concat-equiv-arrow-cospan right-map-right-concat-equiv-arrow-cospan = g' right-concat-equiv-arrow-cospan : cospan l4 A B' pr1 right-concat-equiv-arrow-cospan = cospanning-type-right-concat-equiv-arrow-cospan pr1 (pr2 right-concat-equiv-arrow-cospan) = left-map-right-concat-equiv-arrow-cospan pr2 (pr2 right-concat-equiv-arrow-cospan) = right-map-right-concat-equiv-arrow-cospan
See also
Recent changes
- 2026-02-12. Fredrik Bakke. Operations on cospans (#1735).