Freek Wiedijk’s 100 Theorems
Content created by Egbert Rijke and Fredrik Bakke.
Created on 2024-10-17.
Last modified on 2024-10-29.
This file records formalized results from Freek Wiedijk’s Formalizing 100 Theorems. [Wie]
module literature.100-theorems where
The list
3. The Denumerability of the Rational Numbers
Author: Fredrik Bakke
open import elementary-number-theory.rational-numbers using ( is-countable-ℚ)
11. The Infinitude of Primes
Author: Egbert Rijke
open import elementary-number-theory.infinitude-of-primes using ( infinitude-of-primes-ℕ)
22. The Non-Denumerability of the Continuum
This is not yet formalized.
25. Schröder–Bernstein Theorem
Author: Elif Uskuplu
Note: The formalization of the Cantor-Schröder-Bernstein theorem in agda-unimath is a generalization of the statement to all types, i.e., it is not restricted to sets. This generalization is originally due to Martin-Escardó, hence we refer to the generalization as the Cantor-Schröder-Bernstein-Escardó theorem.
open import foundation.cantor-schroder-bernstein-escardo using ( Cantor-Schröder-Bernstein-Escardó) open import foundation.cantor-schroder-bernstein-escardo using ( Cantor-Schröder-Bernstein)
44. The Binomial Theorem
Author: Egbert Rijke
open import commutative-algebra.binomial-theorem-commutative-rings using ( binomial-theorem-Commutative-Ring) open import commutative-algebra.binomial-theorem-commutative-semirings using ( binomial-theorem-Commutative-Semiring) open import ring-theory.binomial-theorem-rings using ( binomial-theorem-Ring) open import ring-theory.binomial-theorem-semirings using ( binomial-theorem-Semiring) open import elementary-number-theory.binomial-theorem-integers using ( binomial-theorem-ℤ) open import elementary-number-theory.binomial-theorem-natural-numbers using ( binomial-theorem-ℕ)
52. The Number of Subsets of a Set
Author: Egbert Rijke
open import univalent-combinatorics.decidable-subtypes using ( number-of-elements-decidable-subtype-is-finite)
58. Formula for the number of combinations
Author: Egbert Rijke
open import univalent-combinatorics.binomial-types using ( has-cardinality-binomial-type)
60. Bezout’s Lemma
Author: Bryan Lu
Note that the 60th theorem in Freek’s list is listed as “Bezout’s Theorem”, while the linked theorems are formalizations of Bezout’s lemma, even though these are different statements.
open import elementary-number-theory.bezouts-lemma-integers using ( bezouts-lemma-ℤ) open import elementary-number-theory.bezouts-lemma-natural-numbers using ( bezouts-lemma-ℕ)
63. Cantor’s Theorem
Author: Egbert Rijke
open import foundation.cantors-theorem using ( theorem-Cantor)
69. Greatest Common Divisor Algorithm
Author: Egbert Rijke
open import elementary-number-theory.greatest-common-divisor-natural-numbers using ( GCD-ℕ)
74. The Principle of Mathematical Induction
Author: Egbert Rijke
open import elementary-number-theory.natural-numbers using ( ind-ℕ)
80. The Fundamental Theorem of Arithmetic
Author: Victor Blanchi
open import elementary-number-theory.fundamental-theorem-of-arithmetic using ( fundamental-theorem-arithmetic-list-ℕ)
91. The Triangle Inequality
Author: malarbol
open import real-numbers.metric-space-of-real-numbers using ( is-triangular-premetric-leq-ℝ)
96. Principle of Inclusion/Exclusion
This is not yet formalized.
References
- [Wie]
- Freek Wiedijk. Formalizing 100 theorems. URL: https://www.cs.ru.nl/~freek/100/.
External links
- The spiritual successor to Formalizing 100 Theorems is 1000+ theorems, also due to Freek Wiedijk.
Recent changes
- 2024-10-29. Fredrik Bakke. chore: some fixes to links (#1217).
- 2024-10-29. Egbert Rijke. Linked names (#1216).
- 2024-10-28. Egbert Rijke. Formula for the number of combinations (#1213).
- 2024-10-28. Egbert Rijke. The number of decidable subtypes of a finite type (#1212).
- 2024-10-18. Fredrik Bakke and Egbert Rijke. Bezout’s lemma – 100 theorems (#1202).