Wiedijk’s 100 Theorems
Content created by Fredrik Bakke, Louis Wasserman, Egbert Rijke and malarbol.
Created on 2024-10-17.
Last modified on 2025-11-10.
This file records formalized results from Freek Wiedijk’s Formalizing 100 Theorems [Wie].
module literature.100-theorems where
The list
3. The denumerability of the rational numbers
Author: Fredrik Bakke
open import elementary-number-theory.rational-numbers using ( is-countable-ℚ)
11. The infinitude of primes
Author: Egbert Rijke
open import elementary-number-theory.infinitude-of-primes using ( infinitude-of-primes-ℕ)
25. Schröder–Bernstein theorem
Author: Elif Uskuplu
open import foundation.cantor-schroder-bernstein-escardo using ( Cantor-Schröder-Bernstein-Escardó ; Cantor-Schröder-Bernstein)
Author: Fredrik Bakke
open import foundation.cantor-schroder-bernstein-decidable-embeddings using ( Cantor-Schröder-Bernstein-WLPO)
42. Sum of the Reciprocals of the Triangular Numbers
Author: Louis Wasserman
open import elementary-number-theory.triangular-numbers using ( sum-reciprocal-triangular-number-ℕ)
44. The binomial theorem
Author: Egbert Rijke
open import commutative-algebra.binomial-theorem-commutative-rings using ( binomial-theorem-Commutative-Ring) open import commutative-algebra.binomial-theorem-commutative-semirings using ( binomial-theorem-Commutative-Semiring) open import ring-theory.binomial-theorem-rings using ( binomial-theorem-Ring) open import ring-theory.binomial-theorem-semirings using ( binomial-theorem-Semiring) open import elementary-number-theory.binomial-theorem-integers using ( binomial-theorem-ℤ) open import elementary-number-theory.binomial-theorem-natural-numbers using ( binomial-theorem-ℕ)
52. The number of subsets of a set
Author: Egbert Rijke
open import univalent-combinatorics.decidable-subtypes using ( number-of-elements-decidable-subtype-is-finite)
58. Formula for the number of combinations
Author: Egbert Rijke
open import univalent-combinatorics.binomial-types using ( has-cardinality-binomial-type)
60. Bezout’s lemma
Author: Bryan Lu
Note that the 60th theorem in Freek’s list is listed as “Bezout’s Theorem”, while the linked theorems are formalizations of Bezout’s lemma, even though these are different statements.
open import elementary-number-theory.bezouts-lemma-integers using ( bezouts-lemma-ℤ) open import elementary-number-theory.bezouts-lemma-natural-numbers using ( bezouts-lemma-ℕ)
63. Cantor’s theorem
Author: Egbert Rijke
open import foundation.cantors-theorem using ( theorem-Cantor)
66. Sum of a Geometric Series
Author: Louis Wasserman
open import real-numbers.geometric-sequences-real-numbers using ( compute-sum-standard-geometric-fin-sequence-ℝ ; compute-sum-standard-geometric-series-ℝ)
68. Sum of an arithmetic series
Author: malarbol
open import elementary-number-theory.triangular-numbers using ( compute-triangular-number-ℕ) open import ring-theory.arithmetic-series-semirings using ( compute-sum-add-mul-nat-Semiring)
69. Greatest common divisor algorithm
Author: Egbert Rijke
open import elementary-number-theory.greatest-common-divisor-natural-numbers using ( GCD-ℕ)
74. The principle of mathematical induction
Author: Egbert Rijke
open import elementary-number-theory.natural-numbers using ( ind-ℕ)
80. The fundamental theorem of arithmetic
Author: Victor Blanchi
open import elementary-number-theory.fundamental-theorem-of-arithmetic using ( fundamental-theorem-arithmetic-list-ℕ)
91. The triangle inequality
Author: malarbol
open import real-numbers.metric-space-of-real-numbers using ( is-triangular-neighborhood-ℝ)
Author: Louis Wasserman
open import real-numbers.absolute-value-real-numbers using ( triangle-inequality-abs-ℝ) open import real-numbers.distance-real-numbers using ( triangle-inequality-dist-ℝ)
See also
- The spiritual successor to Formalizing 100 Theorems is 1000+ theorems [1000+].
References
- [1000+]
- 1000plus. 1000+ theorems. URL: https://1000-plus.github.io/.
- [Wie]
- Freek Wiedijk. Formalizing 100 theorems. URL: https://www.cs.ru.nl/~freek/100/.
Recent changes
- 2025-11-10. Louis Wasserman. The sum of geometric series in the real numbers (#1676).
- 2025-11-06. Louis Wasserman. The sum of the reciprocals of the triangular numbers is 2 (#1665).
- 2025-10-29. Fredrik Bakke. A constructive Cantor–Schröder–Bernstein theorem (#1206).
- 2025-08-30. malarbol and Louis Wasserman. Arithmetic and geometric sequences in semirings (#1475).
- 2025-08-30. Fredrik Bakke. Rebrand from “1000plus” to “Wikipedia’s list of theorems” (#1356).