The loop homotopy on the circle
Content created by Fredrik Bakke.
Created on 2024-06-04.
Last modified on 2024-06-04.
module synthetic-homotopy-theory.loop-homotopy-circle where
Imports
open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.function-extensionality open import foundation.function-types open import foundation.homotopies open import foundation.identity-types open import foundation.negated-equality open import foundation.negation open import foundation.transport-along-identifications open import foundation.universe-levels open import structured-types.pointed-homotopies open import structured-types.pointed-maps open import synthetic-homotopy-theory.circle
Idea
The loop homotopy¶ on the circle is the family of equalities
loop-htpy-𝕊¹ : (x : 𝕊¹) → x = x
defined by transporting along the loop of the circle. This homotopy is distinct from the constant homotopy and has winding number 1.
Definitions
The loop homotopy on the circle
loop-htpy-𝕊¹ : (x : 𝕊¹) → x = x loop-htpy-𝕊¹ = function-apply-dependent-universal-property-𝕊¹ ( eq-value id id) ( loop-𝕊¹) ( map-compute-dependent-identification-eq-value-id-id ( loop-𝕊¹) ( loop-𝕊¹) ( loop-𝕊¹) ( refl)) compute-base-loop-htpy-𝕊¹ : loop-htpy-𝕊¹ base-𝕊¹ = loop-𝕊¹ compute-base-loop-htpy-𝕊¹ = base-dependent-universal-property-𝕊¹ ( eq-value id id) ( loop-𝕊¹) ( map-compute-dependent-identification-eq-value-id-id ( loop-𝕊¹) ( loop-𝕊¹) ( loop-𝕊¹) ( refl))
Properties
The loop homotopy on the circle is nontrivial
abstract is-not-refl-ev-base-loop-htpy-𝕊¹ : loop-htpy-𝕊¹ base-𝕊¹ ≠ refl is-not-refl-ev-base-loop-htpy-𝕊¹ p = is-nontrivial-loop-𝕊¹ (inv compute-base-loop-htpy-𝕊¹ ∙ p) is-nontrivial-loop-htpy-𝕊¹' : ¬ (loop-htpy-𝕊¹ ~ refl-htpy) is-nontrivial-loop-htpy-𝕊¹' H = is-not-refl-ev-base-loop-htpy-𝕊¹ (H base-𝕊¹) is-nontrivial-loop-htpy-𝕊¹ : loop-htpy-𝕊¹ ≠ refl-htpy is-nontrivial-loop-htpy-𝕊¹ = nonequal-Π loop-htpy-𝕊¹ refl-htpy base-𝕊¹ is-not-refl-ev-base-loop-htpy-𝕊¹
Recent changes
- 2024-06-04. Fredrik Bakke. Quasiidempotence is not a proposition (#1127).