Deflationary maps on a preorder
Content created by Egbert Rijke.
Created on 2025-02-09.
Last modified on 2025-02-09.
module order-theory.deflationary-maps-preorders where
Imports
open import foundation.dependent-pair-types open import foundation.propositions open import foundation.subtypes open import foundation.universe-levels open import order-theory.order-preserving-maps-preorders open import order-theory.preorders
Idea
A map on a preorder is said to be a deflationary map¶ if the inequality
holds for any element . If is also order preserving we say that is a deflationary morphism¶.
Definitions
The predicate of being a deflationary map
module _ {l1 l2 : Level} (P : Preorder l1 l2) (f : type-Preorder P → type-Preorder P) where is-deflationary-prop-map-Preorder : Prop (l1 ⊔ l2) is-deflationary-prop-map-Preorder = Π-Prop (type-Preorder P) (λ x → leq-prop-Preorder P (f x) x) is-deflationary-map-Preorder : UU (l1 ⊔ l2) is-deflationary-map-Preorder = type-Prop is-deflationary-prop-map-Preorder is-prop-is-deflationary-map-Preorder : is-prop is-deflationary-map-Preorder is-prop-is-deflationary-map-Preorder = is-prop-type-Prop is-deflationary-prop-map-Preorder
The type of deflationary maps on a preorder
module _ {l1 l2 : Level} (P : Preorder l1 l2) where deflationary-map-Preorder : UU (l1 ⊔ l2) deflationary-map-Preorder = type-subtype (is-deflationary-prop-map-Preorder P) module _ {l1 l2 : Level} (P : Preorder l1 l2) (f : deflationary-map-Preorder P) where map-deflationary-map-Preorder : type-Preorder P → type-Preorder P map-deflationary-map-Preorder = pr1 f is-deflationary-deflationary-map-Preorder : is-deflationary-map-Preorder P map-deflationary-map-Preorder is-deflationary-deflationary-map-Preorder = pr2 f
The predicate on order preserving maps of being deflationary
module _ {l1 l2 : Level} (P : Preorder l1 l2) (f : hom-Preorder P P) where is-deflationary-prop-hom-Preorder : Prop (l1 ⊔ l2) is-deflationary-prop-hom-Preorder = is-deflationary-prop-map-Preorder P (map-hom-Preorder P P f) is-deflationary-hom-Preorder : UU (l1 ⊔ l2) is-deflationary-hom-Preorder = is-deflationary-map-Preorder P (map-hom-Preorder P P f) is-prop-is-deflationary-hom-Preorder : is-prop is-deflationary-hom-Preorder is-prop-is-deflationary-hom-Preorder = is-prop-is-deflationary-map-Preorder P (map-hom-Preorder P P f)
The type of deflationary morphisms on a preorder
module _ {l1 l2 : Level} (P : Preorder l1 l2) where deflationary-hom-Preorder : UU (l1 ⊔ l2) deflationary-hom-Preorder = type-subtype (is-deflationary-prop-hom-Preorder P) module _ {l1 l2 : Level} (P : Preorder l1 l2) (f : deflationary-hom-Preorder P) where hom-deflationary-hom-Preorder : hom-Preorder P P hom-deflationary-hom-Preorder = pr1 f map-deflationary-hom-Preorder : type-Preorder P → type-Preorder P map-deflationary-hom-Preorder = map-hom-Preorder P P hom-deflationary-hom-Preorder preserves-order-deflationary-hom-Preorder : preserves-order-Preorder P P map-deflationary-hom-Preorder preserves-order-deflationary-hom-Preorder = preserves-order-hom-Preorder P P hom-deflationary-hom-Preorder is-deflationary-deflationary-hom-Preorder : is-deflationary-map-Preorder P map-deflationary-hom-Preorder is-deflationary-deflationary-hom-Preorder = pr2 f deflationary-map-deflationary-hom-Preorder : deflationary-map-Preorder P pr1 deflationary-map-deflationary-hom-Preorder = map-deflationary-hom-Preorder pr2 deflationary-map-deflationary-hom-Preorder = is-deflationary-deflationary-hom-Preorder
Recent changes
- 2025-02-09. Egbert Rijke. Strict preorders (#1308).