Homomorphisms of groups

Content created by Egbert Rijke, Fredrik Bakke and Jonathan Prieto-Cubides.

Created on 2022-03-17.
Last modified on 2024-03-11.

module group-theory.homomorphisms-groups where
Imports
open import foundation.action-on-identifications-functions
open import foundation.cartesian-product-types
open import foundation.dependent-pair-types
open import foundation.equivalences
open import foundation.identity-types
open import foundation.propositions
open import foundation.sets
open import foundation.torsorial-type-families
open import foundation.universe-levels

open import group-theory.groups
open import group-theory.homomorphisms-monoids
open import group-theory.homomorphisms-semigroups

Idea

A group homomorphism from one group to another is a semigroup homomorphism between their underlying semigroups.

Definition

module _
  {l1 l2 : Level} (G : Group l1) (H : Group l2)
  where

  preserves-mul-Group : (type-Group G  type-Group H)  UU (l1  l2)
  preserves-mul-Group f =
    preserves-mul-Semigroup (semigroup-Group G) (semigroup-Group H) f

  preserves-mul-Group' : (type-Group G  type-Group H)  UU (l1  l2)
  preserves-mul-Group' f =
    preserves-mul-Semigroup' (semigroup-Group G) (semigroup-Group H) f

  is-prop-preserves-mul-Group :
    (f : type-Group G  type-Group H)  is-prop (preserves-mul-Group f)
  is-prop-preserves-mul-Group =
    is-prop-preserves-mul-Semigroup (semigroup-Group G) (semigroup-Group H)

  preserves-mul-prop-Group : (type-Group G  type-Group H)  Prop (l1  l2)
  preserves-mul-prop-Group =
    preserves-mul-prop-Semigroup (semigroup-Group G) (semigroup-Group H)

  hom-Group : UU (l1  l2)
  hom-Group =
    hom-Semigroup
      ( semigroup-Group G)
      ( semigroup-Group H)

  map-hom-Group : hom-Group  type-Group G  type-Group H
  map-hom-Group = pr1

  preserves-mul-hom-Group :
    (f : hom-Group) 
    preserves-mul-Semigroup
      ( semigroup-Group G)
      ( semigroup-Group H)
      ( map-hom-Group f)
  preserves-mul-hom-Group = pr2

The identity group homomorphism

id-hom-Group : {l : Level} (G : Group l)  hom-Group G G
id-hom-Group G = id-hom-Semigroup (semigroup-Group G)

Composition of group homomorphisms

module _
  {l1 l2 l3 : Level} (G : Group l1) (H : Group l2) (K : Group l3)
  (g : hom-Group H K) (f : hom-Group G H)
  where

  comp-hom-Group : hom-Group G K
  comp-hom-Group =
    comp-hom-Semigroup
      ( semigroup-Group G)
      ( semigroup-Group H)
      ( semigroup-Group K)
      ( g)
      ( f)

  map-comp-hom-Group : type-Group G  type-Group K
  map-comp-hom-Group =
    map-comp-hom-Semigroup
      ( semigroup-Group G)
      ( semigroup-Group H)
      ( semigroup-Group K)
      ( g)
      ( f)

  preserves-mul-comp-hom-Group :
    preserves-mul-Group G K map-comp-hom-Group
  preserves-mul-comp-hom-Group =
    preserves-mul-comp-hom-Semigroup
      ( semigroup-Group G)
      ( semigroup-Group H)
      ( semigroup-Group K)
      ( g)
      ( f)

Properties

Characterization of the identity type of group homomorphisms

module _
  {l1 l2 : Level} (G : Group l1) (H : Group l2)
  where

  htpy-hom-Group : (f g : hom-Group G H)  UU (l1  l2)
  htpy-hom-Group = htpy-hom-Semigroup (semigroup-Group G) (semigroup-Group H)

  refl-htpy-hom-Group : (f : hom-Group G H)  htpy-hom-Group f f
  refl-htpy-hom-Group =
    refl-htpy-hom-Semigroup
      ( semigroup-Group G)
      ( semigroup-Group H)

  htpy-eq-hom-Group : (f g : hom-Group G H)  Id f g  htpy-hom-Group f g
  htpy-eq-hom-Group =
    htpy-eq-hom-Semigroup
      ( semigroup-Group G)
      ( semigroup-Group H)

  abstract
    is-torsorial-htpy-hom-Group :
      ( f : hom-Group G H)  is-torsorial (htpy-hom-Group f)
    is-torsorial-htpy-hom-Group =
      is-torsorial-htpy-hom-Semigroup
        ( semigroup-Group G)
        ( semigroup-Group H)

  abstract
    is-equiv-htpy-eq-hom-Group :
      (f g : hom-Group G H)  is-equiv (htpy-eq-hom-Group f g)
    is-equiv-htpy-eq-hom-Group =
      is-equiv-htpy-eq-hom-Semigroup
        ( semigroup-Group G)
        ( semigroup-Group H)

  extensionality-hom-Group :
    (f g : hom-Group G H)  Id f g  htpy-hom-Group f g
  pr1 (extensionality-hom-Group f g) = htpy-eq-hom-Group f g
  pr2 (extensionality-hom-Group f g) = is-equiv-htpy-eq-hom-Group f g

  eq-htpy-hom-Group : {f g : hom-Group G H}  htpy-hom-Group f g  Id f g
  eq-htpy-hom-Group =
    eq-htpy-hom-Semigroup (semigroup-Group G) (semigroup-Group H)

  is-set-hom-Group : is-set (hom-Group G H)
  is-set-hom-Group =
    is-set-hom-Semigroup (semigroup-Group G) (semigroup-Group H)

  hom-set-Group : Set (l1  l2)
  pr1 hom-set-Group = hom-Group G H
  pr2 hom-set-Group = is-set-hom-Group

Associativity of composition of group homomorphisms

module _
  {l1 l2 l3 l4 : Level}
  (G : Group l1) (H : Group l2) (K : Group l3) (L : Group l4)
  where

  associative-comp-hom-Group :
    (h : hom-Group K L) (g : hom-Group H K) (f : hom-Group G H) 
    comp-hom-Group G H L (comp-hom-Group H K L h g) f 
    comp-hom-Group G K L h (comp-hom-Group G H K g f)
  associative-comp-hom-Group =
    associative-comp-hom-Semigroup
      ( semigroup-Group G)
      ( semigroup-Group H)
      ( semigroup-Group K)
      ( semigroup-Group L)

The left and right unit laws for composition of group homomorphisms

left-unit-law-comp-hom-Group :
  {l1 l2 : Level} (G : Group l1) (H : Group l2) (f : hom-Group G H) 
  Id (comp-hom-Group G H H (id-hom-Group H) f) f
left-unit-law-comp-hom-Group G H =
  left-unit-law-comp-hom-Semigroup
    ( semigroup-Group G)
    ( semigroup-Group H)

right-unit-law-comp-hom-Group :
  {l1 l2 : Level} (G : Group l1) (H : Group l2) (f : hom-Group G H) 
  Id (comp-hom-Group G G H f (id-hom-Group G)) f
right-unit-law-comp-hom-Group G H =
  right-unit-law-comp-hom-Semigroup
    ( semigroup-Group G)
    ( semigroup-Group H)

Group homomorphisms preserve the unit element

module _
  {l1 l2 : Level} (G : Group l1) (H : Group l2)
  where

  preserves-unit-Group : (type-Group G  type-Group H)  UU l2
  preserves-unit-Group f = f (unit-Group G)  unit-Group H

  abstract
    preserves-unit-hom-Group :
      ( f : hom-Group G H)  preserves-unit-Group (map-hom-Group G H f)
    preserves-unit-hom-Group f =
      ( inv (left-unit-law-mul-Group H (map-hom-Group G H f (unit-Group G)))) 
      ( ap
        ( λ x  mul-Group H x (map-hom-Group G H f (unit-Group G)))
        ( inv
          ( left-inverse-law-mul-Group H
            ( map-hom-Group G H f (unit-Group G))))) 
      ( associative-mul-Group H
        ( inv-Group H (map-hom-Group G H f (unit-Group G)))
        ( map-hom-Group G H f (unit-Group G))
        ( map-hom-Group G H f (unit-Group G))) 
      ( ap
        ( mul-Group H (inv-Group H (map-hom-Group G H f (unit-Group G))))
        ( inv (preserves-mul-hom-Group G H f))) 
      ( ap
        ( λ x 
          mul-Group H
            ( inv-Group H (map-hom-Group G H f (unit-Group G)))
            ( map-hom-Group G H f x))
        ( left-unit-law-mul-Group G (unit-Group G))) 
      ( left-inverse-law-mul-Group H (map-hom-Group G H f (unit-Group G)))

Group homomorphisms preserve inverses

module _
  {l1 l2 : Level} (G : Group l1) (H : Group l2)
  where

  preserves-inverses-Group :
    (type-Group G  type-Group H)  UU (l1  l2)
  preserves-inverses-Group f =
    {x : type-Group G}  Id (f (inv-Group G x)) (inv-Group H (f x))

  abstract
    preserves-inv-hom-Group :
      (f : hom-Group G H)  preserves-inverses-Group (map-hom-Group G H f)
    preserves-inv-hom-Group f {x} =
      ( inv
        ( right-unit-law-mul-Group H (map-hom-Group G H f (inv-Group G x)))) 
      ( ap
        ( mul-Group H (map-hom-Group G H f (inv-Group G x)))
        ( inv (right-inverse-law-mul-Group H (map-hom-Group G H f x)))) 
      ( inv
        ( associative-mul-Group H
          ( map-hom-Group G H f (inv-Group G x))
          ( map-hom-Group G H f x)
          ( inv-Group H (map-hom-Group G H f x)))) 
      ( inv
        ( ap
          ( λ y  mul-Group H y (inv-Group H (map-hom-Group G H f x)))
          ( preserves-mul-hom-Group G H f))) 
      ( ap
        ( λ y 
          mul-Group H
            ( map-hom-Group G H f y)
            ( inv-Group H (map-hom-Group G H f x)))
        ( left-inverse-law-mul-Group G x)) 
      ( ap
        ( λ y  mul-Group H y (inv-Group H (map-hom-Group G H f x)))
        ( preserves-unit-hom-Group G H f)) 
      ( left-unit-law-mul-Group H (inv-Group H (map-hom-Group G H f x)))

Group homomorphisms preserve all group structure

module _
  {l1 l2 : Level} (G : Group l1) (H : Group l2)
  where

  hom-Group' : UU (l1  l2)
  hom-Group' =
    Σ ( hom-Group G H)
      ( λ f 
        ( preserves-unit-Group G H (map-hom-Group G H f)) ×
        ( preserves-inverses-Group G H (map-hom-Group G H f)))

  preserves-group-structure-hom-Group :
    hom-Group G H  hom-Group'
  pr1 (preserves-group-structure-hom-Group f) = f
  pr1 (pr2 (preserves-group-structure-hom-Group f)) =
    preserves-unit-hom-Group G H f
  pr2 (pr2 (preserves-group-structure-hom-Group f)) =
    preserves-inv-hom-Group G H f

Group homomorphisms induce monoid homomorphisms between the underlying monoids

module _
  {l1 l2 : Level} (G : Group l1) (H : Group l2) (f : hom-Group G H)
  where

  hom-monoid-hom-Group : hom-Monoid (monoid-Group G) (monoid-Group H)
  pr1 hom-monoid-hom-Group = f
  pr2 hom-monoid-hom-Group = preserves-unit-hom-Group G H f

Group homomorphisms preserve left and right division

module _
  {l1 l2 : Level} (G : Group l1) (H : Group l2) (f : hom-Group G H)
  where

  preserves-left-div-hom-Group :
    {x y : type-Group G} 
    map-hom-Group G H f (left-div-Group G x y) 
    left-div-Group H (map-hom-Group G H f x) (map-hom-Group G H f y)
  preserves-left-div-hom-Group =
    ( preserves-mul-hom-Group G H f) 
    ( ap (mul-Group' H _) (preserves-inv-hom-Group G H f))

  preserves-right-div-hom-Group :
    {x y : type-Group G} 
    map-hom-Group G H f (right-div-Group G x y) 
    right-div-Group H (map-hom-Group G H f x) (map-hom-Group G H f y)
  preserves-right-div-hom-Group =
    ( preserves-mul-hom-Group G H f) 
    ( ap (mul-Group H _) (preserves-inv-hom-Group G H f))

Recent changes