Essential fibers of functors between precategories
Content created by Fredrik Bakke.
Created on 2023-11-01.
Last modified on 2023-11-09.
module category-theory.essential-fibers-of-functors-precategories where
Imports
open import category-theory.functors-precategories open import category-theory.isomorphisms-in-precategories open import category-theory.precategories open import foundation.dependent-pair-types open import foundation.universe-levels
Idea
Given a functor F : C → D
between
precategories and an object y : D
we can
form the essential fiber of y
over F
as the
subprecategory of C
spanned by... TODO
Definitions
The essential fiber over an object
module _ {l1 l2 l3 l4 : Level} (C : Precategory l1 l2) (D : Precategory l3 l4) (F : functor-Precategory C D) where essential-fiber-functor-Precategory : (y : obj-Precategory D) → UU (l1 ⊔ l4) essential-fiber-functor-Precategory y = Σ ( obj-Precategory C) ( λ x → iso-Precategory D (obj-functor-Precategory C D F x) y) essential-fiber-functor-Precategory' : (y : obj-Precategory D) → UU (l1 ⊔ l4) essential-fiber-functor-Precategory' y = Σ ( obj-Precategory C) ( λ x → iso-Precategory D y (obj-functor-Precategory C D F x))
See also
- Essentially surjective functors between precategories
- Split essentially surjective functors between precategories
External links
- Essential Fibres at 1lab
- essential fiber at Lab
Recent changes
- 2023-11-09. Fredrik Bakke. Typeset
nlab
as$n$Lab
(#911). - 2023-11-01. Fredrik Bakke. Fun with functors (#886).