Functoriality of suspensions

Content created by Fredrik Bakke, Egbert Rijke and Tom de Jong.

Created on 2023-11-03.
Last modified on 2024-02-06.

module synthetic-homotopy-theory.functoriality-suspensions where
Imports
open import foundation.action-on-identifications-functions
open import foundation.commuting-squares-of-identifications
open import foundation.dependent-pair-types
open import foundation.equivalences
open import foundation.function-extensionality
open import foundation.function-types
open import foundation.homotopies
open import foundation.identity-types
open import foundation.retractions
open import foundation.retracts-of-types
open import foundation.sections
open import foundation.universe-levels

open import synthetic-homotopy-theory.suspension-structures
open import synthetic-homotopy-theory.suspensions-of-types

Idea

Any map f : A → B induces a map map-suspension f : suspension A → suspension B on the suspensions suspensions of A and B.

Furthermore, this operation is functorial: it preserves identities and function composition.

Definition

module _
  {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A  B)
  where

  map-suspension-structure : suspension-structure A (suspension B)
  pr1 map-suspension-structure = north-suspension
  pr1 (pr2 map-suspension-structure) = south-suspension
  pr2 (pr2 map-suspension-structure) = meridian-suspension  f

  map-suspension : suspension A  suspension B
  map-suspension =
    cogap-suspension map-suspension-structure

  compute-north-map-suspension :
    map-suspension (north-suspension)  north-suspension
  compute-north-map-suspension =
    compute-north-cogap-suspension map-suspension-structure

  compute-south-map-suspension :
    map-suspension (south-suspension)  south-suspension
  compute-south-map-suspension =
    compute-south-cogap-suspension map-suspension-structure

  compute-meridian-map-suspension :
    (a : A) 
    coherence-square-identifications
      ( compute-north-map-suspension)
      ( ap map-suspension (meridian-suspension a))
      ( meridian-suspension (f a))
      ( compute-south-map-suspension)
  compute-meridian-map-suspension =
    compute-meridian-cogap-suspension
      ( map-suspension-structure)

Properties

The induced map on suspensions of the identity is the identity again

module _
  {l : Level} (A : UU l)
  where

  htpy-function-out-of-suspension-id-map-suspension :
    htpy-function-out-of-suspension A (map-suspension id) id
  pr1 htpy-function-out-of-suspension-id-map-suspension =
    compute-north-map-suspension id
  pr1 (pr2 htpy-function-out-of-suspension-id-map-suspension) =
    compute-south-map-suspension id
  pr2 (pr2 htpy-function-out-of-suspension-id-map-suspension) a =
    concat-right-identification-coherence-square-identifications
      ( compute-north-map-suspension id)
      ( ap (map-suspension id) (meridian-suspension a))
      ( meridian-suspension a)
      ( compute-south-map-suspension id)
      ( inv (ap-id (meridian-suspension a)))
      ( compute-meridian-map-suspension id a)

  id-map-suspension : map-suspension (id {A = A}) ~ id
  id-map-suspension =
    htpy-htpy-function-out-of-suspension A
      ( map-suspension id)
      ( id)
      ( htpy-function-out-of-suspension-id-map-suspension)

The induced map on suspensions of a composition is the composition of the induced maps

module _
  {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : UU l3}
  (f : A  B) (g : B  C)
  where

  preserves-comp-map-suspension-north :
    (map-suspension g  map-suspension f) north-suspension 
    map-suspension (g  f) north-suspension
  preserves-comp-map-suspension-north =
    ap (map-suspension g) (compute-north-map-suspension f) 
    ( compute-north-map-suspension g 
      ( inv (compute-north-map-suspension (g  f))))

  preserves-comp-map-suspension-south :
    (map-suspension g  map-suspension f) south-suspension 
    map-suspension (g  f) south-suspension
  preserves-comp-map-suspension-south =
    ap (map-suspension g) (compute-south-map-suspension f) 
    ( compute-south-map-suspension g 
      ( inv (compute-south-map-suspension (g  f))))

  coherence-square-identifications-comp-map-suspension :
    (a : A) 
    coherence-square-identifications
      ( preserves-comp-map-suspension-north)
      ( ap (map-suspension g  map-suspension f) (meridian-suspension a))
      ( ap (map-suspension (g  f)) (meridian-suspension a))
      ( preserves-comp-map-suspension-south)
  coherence-square-identifications-comp-map-suspension a =
    horizontal-pasting-coherence-square-identifications _ _
      ( ap (map-suspension g  map-suspension f) (meridian-suspension a))
      ( ap (map-suspension g) (meridian-suspension (f a)))
      ( ap (map-suspension (g  f)) (meridian-suspension a))
      ( _)
      ( _)
      ( concat-left-identification-coherence-square-identifications
        ( ap (map-suspension g) (compute-north-map-suspension f))
        ( ap (map-suspension g) (ap (map-suspension f) (meridian-suspension a)))
        ( ap (map-suspension g) (meridian-suspension (f a)))
        ( ap (map-suspension g) (compute-south-map-suspension f))
        ( inv
          ( ap-comp
            ( map-suspension g)
            ( map-suspension f)
            ( meridian-suspension a)))
        ( map-coherence-square-identifications
          ( map-suspension g)
          ( compute-north-map-suspension f)
          ( ap (map-suspension f) (meridian-suspension a))
          ( meridian-suspension (f a))
          ( compute-south-map-suspension f)
          ( compute-meridian-map-suspension f a)))
      ( horizontal-pasting-coherence-square-identifications _ _
        ( ap (map-suspension g) (meridian-suspension (f a)))
        ( meridian-suspension (g (f a)))
        ( ap (map-suspension (g  f)) (meridian-suspension a))
        ( _)
        ( _)
        ( compute-meridian-map-suspension g (f a))
        ( horizontal-inv-coherence-square-identifications
          ( compute-north-map-suspension (g  f))
          ( ap (map-suspension (g  f)) (meridian-suspension a))
          ( meridian-suspension (g (f a)))
          ( compute-south-map-suspension (g  f))
          ( compute-meridian-map-suspension (g  f) a)))

  htpy-function-out-of-suspension-comp-map-suspension :
    htpy-function-out-of-suspension A
      ( map-suspension g  map-suspension f)
      ( map-suspension (g  f))
  pr1 htpy-function-out-of-suspension-comp-map-suspension =
    preserves-comp-map-suspension-north
  pr1 (pr2 htpy-function-out-of-suspension-comp-map-suspension) =
    preserves-comp-map-suspension-south
  pr2 (pr2 htpy-function-out-of-suspension-comp-map-suspension) =
    coherence-square-identifications-comp-map-suspension

  inv-preserves-comp-map-suspension :
    map-suspension g  map-suspension f ~ map-suspension (g  f)
  inv-preserves-comp-map-suspension =
    htpy-htpy-function-out-of-suspension A
      ( map-suspension g  map-suspension f)
      ( map-suspension (g  f))
      ( htpy-function-out-of-suspension-comp-map-suspension)

  preserves-comp-map-suspension :
    map-suspension (g  f) ~ map-suspension g  map-suspension f
  preserves-comp-map-suspension = inv-htpy inv-preserves-comp-map-suspension

Suspensions preserve retracts

module _
  {l1 l2 : Level} {A : UU l1} {B : UU l2}
  where

  section-map-suspension-section :
    (f : A  B)  section f  section (map-suspension f)
  pr1 (section-map-suspension-section f S) =
    map-suspension (map-section f S)
  pr2 (section-map-suspension-section f (s , h)) =
    homotopy-reasoning
      map-suspension f  map-suspension s
      ~ map-suspension (f  s)
        by inv-preserves-comp-map-suspension s f
      ~ map-suspension id
        by htpy-eq (ap map-suspension (eq-htpy h))
      ~ id
        by id-map-suspension B

  retraction-map-suspension-retraction :
    (f : A  B)  retraction f  retraction (map-suspension f)
  pr1 (retraction-map-suspension-retraction f S) =
    map-suspension (map-retraction f S)
  pr2 (retraction-map-suspension-retraction f (r , h)) =
    homotopy-reasoning
      map-suspension r  map-suspension f
      ~ map-suspension (r  f)
        by inv-preserves-comp-map-suspension f r
      ~ map-suspension id
        by htpy-eq (ap map-suspension (eq-htpy h))
      ~ id
        by id-map-suspension A

  retract-of-suspension-retract-of :
    A retract-of B  (suspension A) retract-of (suspension B)
  pr1 (retract-of-suspension-retract-of R) =
    map-suspension (inclusion-retract R)
  pr2 (retract-of-suspension-retract-of R) =
    retraction-map-suspension-retraction
      ( inclusion-retract R)
      ( retraction-retract R)

Equivalent types have equivalent suspensions

module _
  {l1 l2 : Level} {A : UU l1} {B : UU l2}
  where

  is-equiv-map-suspension-is-equiv :
    (f : A  B)  is-equiv f  is-equiv (map-suspension f)
  pr1 (is-equiv-map-suspension-is-equiv f e) =
    section-map-suspension-section f (section-is-equiv e)
  pr2 (is-equiv-map-suspension-is-equiv f e) =
    retraction-map-suspension-retraction f (retraction-is-equiv e)

  equiv-suspension : A  B  suspension A  suspension B
  pr1 (equiv-suspension e) =
    map-suspension (map-equiv e)
  pr2 (equiv-suspension e) =
    is-equiv-map-suspension-is-equiv (map-equiv e) (is-equiv-map-equiv e)

Recent changes