The group of multiplicative units of a commutative ring
Content created by Egbert Rijke, Fredrik Bakke and Gregor Perčič.
Created on 2023-09-21.
Last modified on 2024-03-11.
module commutative-algebra.groups-of-units-commutative-rings where
Imports
open import category-theory.functors-large-precategories open import commutative-algebra.commutative-rings open import commutative-algebra.homomorphisms-commutative-rings open import commutative-algebra.precategory-of-commutative-rings open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.propositions open import foundation.subtypes open import foundation.universe-levels open import group-theory.abelian-groups open import group-theory.category-of-abelian-groups open import group-theory.groups open import group-theory.homomorphisms-groups open import group-theory.homomorphisms-monoids open import group-theory.monoids open import group-theory.semigroups open import group-theory.submonoids open import ring-theory.groups-of-units-rings
Idea
The group of units of a
commutative ring A
is the
abelian group consisting of all the
invertible elements
in A
. Equivalently, the group of units of A
is the
core of the multiplicative
monoid of A
.
Definitions
module _ {l : Level} (A : Commutative-Ring l) where subtype-group-of-units-Commutative-Ring : type-Commutative-Ring A → Prop l subtype-group-of-units-Commutative-Ring = subtype-group-of-units-Ring (ring-Commutative-Ring A) submonoid-group-of-units-Commutative-Ring : Submonoid l (multiplicative-monoid-Commutative-Ring A) submonoid-group-of-units-Commutative-Ring = submonoid-group-of-units-Ring (ring-Commutative-Ring A) monoid-group-of-units-Commutative-Ring : Monoid l monoid-group-of-units-Commutative-Ring = monoid-group-of-units-Ring (ring-Commutative-Ring A) semigroup-group-of-units-Commutative-Ring : Semigroup l semigroup-group-of-units-Commutative-Ring = semigroup-group-of-units-Ring (ring-Commutative-Ring A) type-group-of-units-Commutative-Ring : UU l type-group-of-units-Commutative-Ring = type-group-of-units-Ring (ring-Commutative-Ring A) mul-group-of-units-Commutative-Ring : (x y : type-group-of-units-Commutative-Ring) → type-group-of-units-Commutative-Ring mul-group-of-units-Commutative-Ring = mul-group-of-units-Ring (ring-Commutative-Ring A) associative-mul-group-of-units-Commutative-Ring : (x y z : type-group-of-units-Commutative-Ring) → mul-group-of-units-Commutative-Ring ( mul-group-of-units-Commutative-Ring x y) ( z) = mul-group-of-units-Commutative-Ring x ( mul-group-of-units-Commutative-Ring y z) associative-mul-group-of-units-Commutative-Ring = associative-mul-group-of-units-Ring (ring-Commutative-Ring A) unit-group-of-units-Commutative-Ring : type-group-of-units-Commutative-Ring unit-group-of-units-Commutative-Ring = unit-group-of-units-Ring (ring-Commutative-Ring A) left-unit-law-mul-group-of-units-Commutative-Ring : (x : type-group-of-units-Commutative-Ring) → mul-group-of-units-Commutative-Ring ( unit-group-of-units-Commutative-Ring) ( x) = x left-unit-law-mul-group-of-units-Commutative-Ring = left-unit-law-mul-group-of-units-Ring (ring-Commutative-Ring A) right-unit-law-mul-group-of-units-Commutative-Ring : (x : type-group-of-units-Commutative-Ring) → mul-group-of-units-Commutative-Ring ( x) ( unit-group-of-units-Commutative-Ring) = x right-unit-law-mul-group-of-units-Commutative-Ring = right-unit-law-mul-group-of-units-Ring (ring-Commutative-Ring A) is-unital-group-of-units-Commutative-Ring : is-unital-Semigroup semigroup-group-of-units-Commutative-Ring is-unital-group-of-units-Commutative-Ring = is-unital-group-of-units-Ring (ring-Commutative-Ring A) inv-group-of-units-Commutative-Ring : type-group-of-units-Commutative-Ring → type-group-of-units-Commutative-Ring inv-group-of-units-Commutative-Ring = inv-group-of-units-Ring (ring-Commutative-Ring A) left-inverse-law-mul-group-of-units-Commutative-Ring : (x : type-group-of-units-Commutative-Ring) → mul-group-of-units-Commutative-Ring ( inv-group-of-units-Commutative-Ring x) ( x) = unit-group-of-units-Commutative-Ring left-inverse-law-mul-group-of-units-Commutative-Ring = left-inverse-law-mul-group-of-units-Ring (ring-Commutative-Ring A) right-inverse-law-mul-group-of-units-Commutative-Ring : (x : type-group-of-units-Commutative-Ring) → mul-group-of-units-Commutative-Ring ( x) ( inv-group-of-units-Commutative-Ring x) = unit-group-of-units-Commutative-Ring right-inverse-law-mul-group-of-units-Commutative-Ring = right-inverse-law-mul-group-of-units-Ring ( ring-Commutative-Ring A) commutative-mul-group-of-units-Commutative-Ring : (x y : type-group-of-units-Commutative-Ring) → mul-group-of-units-Commutative-Ring x y = mul-group-of-units-Commutative-Ring y x commutative-mul-group-of-units-Commutative-Ring x y = eq-type-subtype ( subtype-group-of-units-Commutative-Ring) ( commutative-mul-Commutative-Ring A (pr1 x) (pr1 y)) is-group-group-of-units-Commutative-Ring' : is-group-is-unital-Semigroup ( semigroup-group-of-units-Commutative-Ring) ( is-unital-group-of-units-Commutative-Ring) is-group-group-of-units-Commutative-Ring' = is-group-group-of-units-Ring' (ring-Commutative-Ring A) is-group-group-of-units-Commutative-Ring : is-group-Semigroup semigroup-group-of-units-Commutative-Ring is-group-group-of-units-Commutative-Ring = is-group-group-of-units-Ring (ring-Commutative-Ring A) group-of-units-Commutative-Ring : Group l group-of-units-Commutative-Ring = group-of-units-Ring (ring-Commutative-Ring A) abelian-group-of-units-Commutative-Ring : Ab l pr1 abelian-group-of-units-Commutative-Ring = group-of-units-Commutative-Ring pr2 abelian-group-of-units-Commutative-Ring = commutative-mul-group-of-units-Commutative-Ring inclusion-group-of-units-Commutative-Ring : type-group-of-units-Commutative-Ring → type-Commutative-Ring A inclusion-group-of-units-Commutative-Ring = inclusion-group-of-units-Ring (ring-Commutative-Ring A) preserves-mul-inclusion-group-of-units-Commutative-Ring : {x y : type-group-of-units-Commutative-Ring} → inclusion-group-of-units-Commutative-Ring ( mul-group-of-units-Commutative-Ring x y) = mul-Commutative-Ring A ( inclusion-group-of-units-Commutative-Ring x) ( inclusion-group-of-units-Commutative-Ring y) preserves-mul-inclusion-group-of-units-Commutative-Ring {x} {y} = preserves-mul-inclusion-group-of-units-Ring ( ring-Commutative-Ring A) { x} { y} hom-inclusion-group-of-units-Commutative-Ring : hom-Monoid monoid-group-of-units-Commutative-Ring ( multiplicative-monoid-Commutative-Ring A) hom-inclusion-group-of-units-Commutative-Ring = hom-inclusion-group-of-units-Ring (ring-Commutative-Ring A)
Properties
The group of units of a commutative ring is a functor from commutative rings to abelian groups
The functorial action of group-of-units-Commutative-Ring
module _ {l1 l2 : Level} (A : Commutative-Ring l1) (B : Commutative-Ring l2) (f : hom-Commutative-Ring A B) where map-group-of-units-hom-Commutative-Ring : type-group-of-units-Commutative-Ring A → type-group-of-units-Commutative-Ring B map-group-of-units-hom-Commutative-Ring = map-group-of-units-hom-Ring ( ring-Commutative-Ring A) ( ring-Commutative-Ring B) ( f) preserves-mul-hom-group-of-units-hom-Commutative-Ring : {x y : type-group-of-units-Commutative-Ring A} → map-group-of-units-hom-Commutative-Ring ( mul-group-of-units-Commutative-Ring A x y) = mul-group-of-units-Commutative-Ring B ( map-group-of-units-hom-Commutative-Ring x) ( map-group-of-units-hom-Commutative-Ring y) preserves-mul-hom-group-of-units-hom-Commutative-Ring = preserves-mul-hom-group-of-units-hom-Ring ( ring-Commutative-Ring A) ( ring-Commutative-Ring B) ( f) hom-group-of-units-hom-Commutative-Ring : hom-Group ( group-of-units-Commutative-Ring A) ( group-of-units-Commutative-Ring B) hom-group-of-units-hom-Commutative-Ring = hom-group-of-units-hom-Ring ( ring-Commutative-Ring A) ( ring-Commutative-Ring B) ( f) preserves-unit-hom-group-of-units-hom-Commutative-Ring : map-group-of-units-hom-Commutative-Ring ( unit-group-of-units-Commutative-Ring A) = unit-group-of-units-Commutative-Ring B preserves-unit-hom-group-of-units-hom-Commutative-Ring = preserves-unit-hom-group-of-units-hom-Ring ( ring-Commutative-Ring A) ( ring-Commutative-Ring B) ( f) preserves-inv-hom-group-of-units-hom-Commutative-Ring : {x : type-group-of-units-Commutative-Ring A} → map-group-of-units-hom-Commutative-Ring ( inv-group-of-units-Commutative-Ring A x) = inv-group-of-units-Commutative-Ring B ( map-group-of-units-hom-Commutative-Ring x) preserves-inv-hom-group-of-units-hom-Commutative-Ring = preserves-inv-hom-group-of-units-hom-Ring ( ring-Commutative-Ring A) ( ring-Commutative-Ring B) ( f)
The functorial laws of group-of-units-Commutative-Ring
module _ {l : Level} (A : Commutative-Ring l) where preserves-id-hom-group-of-units-hom-Commutative-Ring : hom-group-of-units-hom-Commutative-Ring A A (id-hom-Commutative-Ring A) = id-hom-Group (group-of-units-Commutative-Ring A) preserves-id-hom-group-of-units-hom-Commutative-Ring = preserves-id-hom-group-of-units-hom-Ring (ring-Commutative-Ring A) module _ {l1 l2 l3 : Level} (A : Commutative-Ring l1) (B : Commutative-Ring l2) (C : Commutative-Ring l3) where preserves-comp-hom-group-of-units-hom-Commutative-Ring : (g : hom-Commutative-Ring B C) (f : hom-Commutative-Ring A B) → hom-group-of-units-hom-Commutative-Ring A C ( comp-hom-Commutative-Ring A B C g f) = comp-hom-Group ( group-of-units-Commutative-Ring A) ( group-of-units-Commutative-Ring B) ( group-of-units-Commutative-Ring C) ( hom-group-of-units-hom-Commutative-Ring B C g) ( hom-group-of-units-hom-Commutative-Ring A B f) preserves-comp-hom-group-of-units-hom-Commutative-Ring g f = preserves-comp-hom-group-of-units-hom-Ring ( ring-Commutative-Ring A) ( ring-Commutative-Ring B) ( ring-Commutative-Ring C) ( g) ( f)
The functor group-of-units-Commutative-Ring
group-of-units-commutative-ring-functor-Large-Precategory : functor-Large-Precategory (λ l → l) ( Commutative-Ring-Large-Precategory) ( Ab-Large-Precategory) obj-functor-Large-Precategory group-of-units-commutative-ring-functor-Large-Precategory = abelian-group-of-units-Commutative-Ring hom-functor-Large-Precategory group-of-units-commutative-ring-functor-Large-Precategory {X = A} {Y = B} = hom-group-of-units-hom-Commutative-Ring A B preserves-comp-functor-Large-Precategory group-of-units-commutative-ring-functor-Large-Precategory {X = A} {Y = B} {Z = C} = preserves-comp-hom-group-of-units-hom-Commutative-Ring A B C preserves-id-functor-Large-Precategory group-of-units-commutative-ring-functor-Large-Precategory {X = A} = preserves-id-hom-group-of-units-hom-Commutative-Ring A
Recent changes
- 2024-03-11. Fredrik Bakke. Refactor category theory to use strictly involutive identity types (#1052).
- 2023-11-24. Egbert Rijke. Refactor precomposition (#937).
- 2023-11-24. Egbert Rijke. Abelianization (#877).
- 2023-10-19. Fredrik Bakke. Level-universe compatibility patch (#862).
- 2023-10-17. Egbert Rijke and Fredrik Bakke. Adjunctions of large categories and some minor refactoring (#854).