Natural isomorphisms between functors between large precategories

Content created by Egbert Rijke and Fredrik Bakke.

Created on 2023-09-27.
Last modified on 2023-10-18.

module category-theory.natural-isomorphisms-functors-large-precategories where
Imports
open import category-theory.commuting-squares-of-morphisms-in-large-precategories
open import category-theory.functors-large-precategories
open import category-theory.isomorphisms-in-large-precategories
open import category-theory.large-precategories
open import category-theory.natural-transformations-functors-large-precategories

open import foundation.universe-levels

Idea

A natural isomorphism γ from functor F : C → D to G : C → D is a natural transformation from F to G such that the morphism γ x : hom (F x) (G x) is an isomorphism, for every object x in C.

Definition

module _
  {αC αD γF γG : Level  Level}
  {βC βD : Level  Level  Level}
  {C : Large-Precategory αC βC}
  {D : Large-Precategory αD βD}
  (F : functor-Large-Precategory γF C D)
  (G : functor-Large-Precategory γG C D)
  where

  iso-family-functor-Large-Precategory : UUω
  iso-family-functor-Large-Precategory =
    { l : Level}
    ( X : obj-Large-Precategory C l) 
    iso-Large-Precategory D
      ( obj-functor-Large-Precategory F X)
      ( obj-functor-Large-Precategory G X)

  record natural-isomorphism-Large-Precategory : UUω
    where
    constructor make-natural-isomorphism
    field
      iso-natural-isomorphism-Large-Precategory :
        iso-family-functor-Large-Precategory
      naturality-natural-isomorphism-Large-Precategory :
        { l1 l2 : Level}
        { X : obj-Large-Precategory C l1}
        { Y : obj-Large-Precategory C l2}
        ( f : hom-Large-Precategory C X Y) 
        coherence-square-hom-Large-Precategory D
          ( hom-functor-Large-Precategory F f)
          ( hom-iso-Large-Precategory D
            ( iso-natural-isomorphism-Large-Precategory X))
          ( hom-iso-Large-Precategory D
            ( iso-natural-isomorphism-Large-Precategory Y))
          ( hom-functor-Large-Precategory G f)

  open natural-isomorphism-Large-Precategory public

  natural-transformation-natural-isomorphism-Large-Precategory :
    natural-isomorphism-Large-Precategory 
    natural-transformation-Large-Precategory C D F G
  hom-natural-transformation-Large-Precategory
    ( natural-transformation-natural-isomorphism-Large-Precategory γ) X =
    hom-iso-Large-Precategory D
      ( iso-natural-isomorphism-Large-Precategory γ X)
  naturality-natural-transformation-Large-Precategory
    ( natural-transformation-natural-isomorphism-Large-Precategory γ) =
      naturality-natural-isomorphism-Large-Precategory γ

Recent changes