Natural isomorphisms between functors between large precategories
Content created by Egbert Rijke and Fredrik Bakke.
Created on 2023-09-27.
Last modified on 2023-10-18.
module category-theory.natural-isomorphisms-functors-large-precategories where
Imports
open import category-theory.commuting-squares-of-morphisms-in-large-precategories open import category-theory.functors-large-precategories open import category-theory.isomorphisms-in-large-precategories open import category-theory.large-precategories open import category-theory.natural-transformations-functors-large-precategories open import foundation.universe-levels
Idea
A natural isomorphism γ
from
functor F : C → D
to
G : C → D
is a
natural transformation
from F
to G
such that the morphism γ x : hom (F x) (G x)
is an
isomorphism, for every
object x
in C
.
Definition
module _ {αC αD γF γG : Level → Level} {βC βD : Level → Level → Level} {C : Large-Precategory αC βC} {D : Large-Precategory αD βD} (F : functor-Large-Precategory γF C D) (G : functor-Large-Precategory γG C D) where iso-family-functor-Large-Precategory : UUω iso-family-functor-Large-Precategory = { l : Level} ( X : obj-Large-Precategory C l) → iso-Large-Precategory D ( obj-functor-Large-Precategory F X) ( obj-functor-Large-Precategory G X) record natural-isomorphism-Large-Precategory : UUω where constructor make-natural-isomorphism field iso-natural-isomorphism-Large-Precategory : iso-family-functor-Large-Precategory naturality-natural-isomorphism-Large-Precategory : { l1 l2 : Level} { X : obj-Large-Precategory C l1} { Y : obj-Large-Precategory C l2} ( f : hom-Large-Precategory C X Y) → coherence-square-hom-Large-Precategory D ( hom-functor-Large-Precategory F f) ( hom-iso-Large-Precategory D ( iso-natural-isomorphism-Large-Precategory X)) ( hom-iso-Large-Precategory D ( iso-natural-isomorphism-Large-Precategory Y)) ( hom-functor-Large-Precategory G f) open natural-isomorphism-Large-Precategory public natural-transformation-natural-isomorphism-Large-Precategory : natural-isomorphism-Large-Precategory → natural-transformation-Large-Precategory C D F G hom-natural-transformation-Large-Precategory ( natural-transformation-natural-isomorphism-Large-Precategory γ) X = hom-iso-Large-Precategory D ( iso-natural-isomorphism-Large-Precategory γ X) naturality-natural-transformation-Large-Precategory ( natural-transformation-natural-isomorphism-Large-Precategory γ) = naturality-natural-isomorphism-Large-Precategory γ
Recent changes
- 2023-10-18. Egbert Rijke. reversing naturality (#856).
- 2023-10-17. Egbert Rijke and Fredrik Bakke. Adjunctions of large categories and some minor refactoring (#854).
- 2023-09-27. Fredrik Bakke. Presheaf categories (#801).