Univalent combinatorics
Content created by Egbert Rijke, Fredrik Bakke, Victor Blanchi and Jonathan Prieto-Cubides.
Created on 2021-12-30.
Last modified on 2025-01-07.
{-# OPTIONS --guardedness #-}
Idea
Univalent combinatorics is the study of finite univalent mathematics. Finiteness in univalent mathematics is expressed by a mere equivalence to a standard finite object.
Many finite structures naturally organize themselves into groupoids, in which
the isomorphic objects are identified by the univalence axiom. Univalence can
therefore help with counting finite structures up to isomorphism. The main piece
of machinery that helps in this task is the general notion of π-finiteness. A
level k
π-finite type is a type that has finitely many connected components,
such that all its homotopy groups up to level k
are finite and all its
homotopy groups above level k
are trivial. The π-finite types enjoy useful
closure properties, such as closedness under Σ, cartesian products, coproducts,
and closedness under Π under a mild condition [Ane24].
Modules in the univalent combinatorics namespace
module univalent-combinatorics where open import univalent-combinatorics.2-element-decidable-subtypes public open import univalent-combinatorics.2-element-subtypes public open import univalent-combinatorics.2-element-types public open import univalent-combinatorics.binomial-types public open import univalent-combinatorics.bracelets public open import univalent-combinatorics.cartesian-product-types public open import univalent-combinatorics.classical-finite-types public open import univalent-combinatorics.complements-isolated-elements public open import univalent-combinatorics.coproduct-types public open import univalent-combinatorics.counting public open import univalent-combinatorics.counting-decidable-subtypes public open import univalent-combinatorics.counting-dependent-pair-types public open import univalent-combinatorics.counting-fibers-of-maps public open import univalent-combinatorics.counting-maybe public open import univalent-combinatorics.cubes public open import univalent-combinatorics.cycle-partitions public open import univalent-combinatorics.cycle-prime-decomposition-natural-numbers public open import univalent-combinatorics.cyclic-finite-types public open import univalent-combinatorics.de-morgans-law public open import univalent-combinatorics.decidable-dependent-function-types public open import univalent-combinatorics.decidable-dependent-pair-types public open import univalent-combinatorics.decidable-equivalence-relations public open import univalent-combinatorics.decidable-propositions public open import univalent-combinatorics.decidable-subtypes public open import univalent-combinatorics.dedekind-finite-sets public open import univalent-combinatorics.dependent-function-types public open import univalent-combinatorics.dependent-pair-types public open import univalent-combinatorics.discrete-sigma-decompositions public open import univalent-combinatorics.distributivity-of-set-truncation-over-finite-products public open import univalent-combinatorics.double-counting public open import univalent-combinatorics.embeddings public open import univalent-combinatorics.embeddings-standard-finite-types public open import univalent-combinatorics.equality-finite-types public open import univalent-combinatorics.equality-standard-finite-types public open import univalent-combinatorics.equivalences public open import univalent-combinatorics.equivalences-cubes public open import univalent-combinatorics.equivalences-standard-finite-types public open import univalent-combinatorics.ferrers-diagrams public open import univalent-combinatorics.fibers-of-maps public open import univalent-combinatorics.finite-choice public open import univalent-combinatorics.finite-presentations public open import univalent-combinatorics.finite-types public open import univalent-combinatorics.finitely-many-connected-components public open import univalent-combinatorics.finitely-presented-types public open import univalent-combinatorics.function-types public open import univalent-combinatorics.image-of-maps public open import univalent-combinatorics.inequality-types-with-counting public open import univalent-combinatorics.inhabited-finite-types public open import univalent-combinatorics.injective-maps public open import univalent-combinatorics.involution-standard-finite-types public open import univalent-combinatorics.isotopies-latin-squares public open import univalent-combinatorics.kuratowski-finite-sets public open import univalent-combinatorics.latin-squares public open import univalent-combinatorics.locally-finite-types public open import univalent-combinatorics.main-classes-of-latin-hypercubes public open import univalent-combinatorics.main-classes-of-latin-squares public open import univalent-combinatorics.maybe public open import univalent-combinatorics.necklaces public open import univalent-combinatorics.orientations-complete-undirected-graph public open import univalent-combinatorics.orientations-cubes public open import univalent-combinatorics.partitions public open import univalent-combinatorics.petri-nets public open import univalent-combinatorics.pi-finite-types public open import univalent-combinatorics.pigeonhole-principle public open import univalent-combinatorics.presented-pi-finite-types public open import univalent-combinatorics.quotients-finite-types public open import univalent-combinatorics.ramsey-theory public open import univalent-combinatorics.repetitions-of-values public open import univalent-combinatorics.repetitions-of-values-sequences public open import univalent-combinatorics.retracts-of-finite-types public open import univalent-combinatorics.sequences-finite-types public open import univalent-combinatorics.set-quotients-of-index-two public open import univalent-combinatorics.sigma-decompositions public open import univalent-combinatorics.skipping-element-standard-finite-types public open import univalent-combinatorics.small-types public open import univalent-combinatorics.standard-finite-pruned-trees public open import univalent-combinatorics.standard-finite-trees public open import univalent-combinatorics.standard-finite-types public open import univalent-combinatorics.steiner-systems public open import univalent-combinatorics.steiner-triple-systems public open import univalent-combinatorics.sums-of-natural-numbers public open import univalent-combinatorics.surjective-maps public open import univalent-combinatorics.symmetric-difference public open import univalent-combinatorics.trivial-sigma-decompositions public open import univalent-combinatorics.type-duality public open import univalent-combinatorics.unbounded-pi-finite-types public open import univalent-combinatorics.unions-subtypes public open import univalent-combinatorics.universal-property-standard-finite-types public open import univalent-combinatorics.unlabeled-partitions public open import univalent-combinatorics.unlabeled-rooted-trees public open import univalent-combinatorics.unlabeled-trees public open import univalent-combinatorics.untruncated-pi-finite-types public
References
- [Ane24]
- Mathieu Anel. The category of π-finite spaces. 2024. arXiv:2107.02082.
Recent changes
- 2025-01-07. Fredrik Bakke. Logic (#1226).
- 2025-01-06. Fredrik Bakke and Egbert Rijke. Fix terminology for π-finite types (#1234).
- 2025-01-06. Fredrik Bakke. Unbounded π-finite types (#1168).
- 2024-09-23. Fredrik Bakke. Some typos, wording improvements, and brief prose additions (#1186).
- 2024-08-22. Fredrik Bakke. Cleanup of finite types (#1166).