The metric space of Cauchy approximations in a metric space
Content created by malarbol.
Created on 2025-05-01.
Last modified on 2025-05-01.
module metric-spaces.metric-space-of-cauchy-approximations-metric-spaces where
Imports
open import elementary-number-theory.positive-rational-numbers open import foundation.dependent-pair-types open import foundation.universe-levels open import metric-spaces.cauchy-approximations-metric-spaces open import metric-spaces.dependent-products-metric-spaces open import metric-spaces.metric-spaces open import metric-spaces.saturated-metric-spaces open import metric-spaces.short-functions-metric-spaces open import metric-spaces.subspaces-metric-spaces
Idea
The type of
Cauchy approximations in
a metric space A
inherits the
metric substructure of the constant
product structure over A
.
This is the metric space of Cauchy approximations¶ in a metric space.
Definitions
The metric space of Cauchy approximations in a metric space
module _ {l1 l2 : Level} (A : Metric-Space l1 l2) where metric-space-of-cauchy-approximations-Metric-Space : Metric-Space (l1 ⊔ l2) l2 metric-space-of-cauchy-approximations-Metric-Space = subspace-Metric-Space ( Π-Metric-Space ℚ⁺ (λ _ → A)) ( is-cauchy-approximation-prop-Metric-Space A)
Properties
The metric space of Cauchy approximations in a saturated metric space is saturated
module _ {l1 l2 : Level} (A : Metric-Space l1 l2) (H : is-saturated-Metric-Space A) where is-saturated-metric-space-of-cauchy-approximations-is-saturated-Metric-Space : is-saturated-Metric-Space (metric-space-of-cauchy-approximations-Metric-Space A) is-saturated-metric-space-of-cauchy-approximations-is-saturated-Metric-Space = is-saturated-subspace-is-saturated-Metric-Space ( Π-Metric-Space ℚ⁺ (λ _ → A)) ( is-saturated-Π-is-saturated-Metric-Space ℚ⁺ (λ _ → A) (λ _ → H)) ( is-cauchy-approximation-prop-Metric-Space A)
The action of short maps on Cauchy approximations is short
module _ {l1 l2 l1' l2' : Level} (A : Metric-Space l1 l2) (B : Metric-Space l1' l2') (f : short-function-Metric-Space A B) where is-short-map-short-function-cauchy-approximation-Metric-Space : is-short-function-Metric-Space ( metric-space-of-cauchy-approximations-Metric-Space A) ( metric-space-of-cauchy-approximations-Metric-Space B) ( map-short-function-cauchy-approximation-Metric-Space A B f) is-short-map-short-function-cauchy-approximation-Metric-Space ε x y Nxy δ = is-short-map-short-function-Metric-Space A B f ε ( map-cauchy-approximation-Metric-Space A x δ) ( map-cauchy-approximation-Metric-Space A y δ) ( Nxy δ) short-map-short-function-cauchy-approximation-Metric-Space : short-function-Metric-Space ( metric-space-of-cauchy-approximations-Metric-Space A) ( metric-space-of-cauchy-approximations-Metric-Space B) short-map-short-function-cauchy-approximation-Metric-Space = map-short-function-cauchy-approximation-Metric-Space A B f , is-short-map-short-function-cauchy-approximation-Metric-Space
The partial application of a Cauchy approximation of Cauchy approximations is a Cauchy approximation
module _ { l1 l2 : Level} (A : Metric-Space l1 l2) ( U : cauchy-approximation-Metric-Space ( metric-space-of-cauchy-approximations-Metric-Space A)) where swap-cauchy-approximation-cauchy-approximations-Metric-Space : ℚ⁺ → cauchy-approximation-Metric-Space A swap-cauchy-approximation-cauchy-approximations-Metric-Space η = ( λ ε → map-cauchy-approximation-Metric-Space ( A) ( map-cauchy-approximation-Metric-Space ( metric-space-of-cauchy-approximations-Metric-Space A) ( U) ( ε)) ( η)) , ( λ ε δ → is-cauchy-approximation-map-cauchy-approximation-Metric-Space ( metric-space-of-cauchy-approximations-Metric-Space A) ( U) ( ε) ( δ) ( η))