The metric space of Cauchy approximations in a metric space
Content created by malarbol and Louis Wasserman.
Created on 2025-05-01.
Last modified on 2025-08-18.
module metric-spaces.metric-space-of-cauchy-approximations-metric-spaces where
Imports
open import elementary-number-theory.positive-rational-numbers open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.identity-types open import foundation.involutions open import foundation.subtypes open import foundation.universe-levels open import metric-spaces.cauchy-approximations-metric-spaces open import metric-spaces.dependent-products-metric-spaces open import metric-spaces.equality-of-metric-spaces open import metric-spaces.isometries-metric-spaces open import metric-spaces.metric-spaces open import metric-spaces.short-functions-metric-spaces open import metric-spaces.subspaces-metric-spaces
Idea
The type of
Cauchy approximations in
a metric space A
inherits the
metric substructure of the constant
product structure over A
.
This is the metric space of Cauchy approximations¶ in a metric space.
Definitions
The metric space of Cauchy approximations in a metric space
module _ {l1 l2 : Level} (A : Metric-Space l1 l2) where metric-space-of-cauchy-approximations-Metric-Space : Metric-Space (l1 ⊔ l2) l2 metric-space-of-cauchy-approximations-Metric-Space = subspace-Metric-Space ( Π-Metric-Space ℚ⁺ (λ _ → A)) ( is-cauchy-approximation-prop-Metric-Space A)
Properties
The map (x : A) ↦ const x
is an isometry between A
and the metric space of cauchy approximations in A
module _ {l1 l2 : Level} (A : Metric-Space l1 l2) where is-isometry-const-cauchy-approximation-Metric-Space : is-isometry-Metric-Space ( A) ( metric-space-of-cauchy-approximations-Metric-Space A) ( const-cauchy-approximation-Metric-Space A) is-isometry-const-cauchy-approximation-Metric-Space ε x y = ( λ Nxy η → Nxy) , ( λ Nxy → Nxy one-ℚ⁺) isometry-const-cauchy-approximation-Metric-Space : isometry-Metric-Space ( A) ( metric-space-of-cauchy-approximations-Metric-Space A) isometry-const-cauchy-approximation-Metric-Space = ( const-cauchy-approximation-Metric-Space A , is-isometry-const-cauchy-approximation-Metric-Space)
The action of short maps on Cauchy approximations is short
module _ {l1 l2 l1' l2' : Level} (A : Metric-Space l1 l2) (B : Metric-Space l1' l2') (f : short-function-Metric-Space A B) where is-short-map-short-function-cauchy-approximation-Metric-Space : is-short-function-Metric-Space ( metric-space-of-cauchy-approximations-Metric-Space A) ( metric-space-of-cauchy-approximations-Metric-Space B) ( map-short-function-cauchy-approximation-Metric-Space A B f) is-short-map-short-function-cauchy-approximation-Metric-Space ε x y Nxy δ = is-short-map-short-function-Metric-Space A B f ε ( map-cauchy-approximation-Metric-Space A x δ) ( map-cauchy-approximation-Metric-Space A y δ) ( Nxy δ) short-map-short-function-cauchy-approximation-Metric-Space : short-function-Metric-Space ( metric-space-of-cauchy-approximations-Metric-Space A) ( metric-space-of-cauchy-approximations-Metric-Space B) short-map-short-function-cauchy-approximation-Metric-Space = map-short-function-cauchy-approximation-Metric-Space A B f , is-short-map-short-function-cauchy-approximation-Metric-Space
Swapping the arguments of a Cauchy approximation of Cauchy approximations produces a Cauchy approximation
module _ { l1 l2 : Level} (A : Metric-Space l1 l2) ( U : cauchy-approximation-Metric-Space ( metric-space-of-cauchy-approximations-Metric-Space A)) where map-swap-map-cauchy-approximation-Metric-Space : ℚ⁺ → ℚ⁺ → type-Metric-Space A map-swap-map-cauchy-approximation-Metric-Space η ε = map-cauchy-approximation-Metric-Space ( A) ( map-cauchy-approximation-Metric-Space ( metric-space-of-cauchy-approximations-Metric-Space A) ( U) ( ε)) ( η) is-cauchy-map-swap-map-cauchy-approximation-Metric-Space : (η : ℚ⁺) → is-cauchy-approximation-Metric-Space ( A) ( map-swap-map-cauchy-approximation-Metric-Space η) is-cauchy-map-swap-map-cauchy-approximation-Metric-Space η ε δ = is-cauchy-approximation-map-cauchy-approximation-Metric-Space ( metric-space-of-cauchy-approximations-Metric-Space A) ( U) ( ε) ( δ) ( η) map-swap-cauchy-approximation-Metric-Space : ℚ⁺ → cauchy-approximation-Metric-Space A map-swap-cauchy-approximation-Metric-Space η = ( map-swap-map-cauchy-approximation-Metric-Space η , is-cauchy-map-swap-map-cauchy-approximation-Metric-Space η) is-cauchy-map-swap-cauchy-approximation-Metric-Space : is-cauchy-approximation-Metric-Space ( metric-space-of-cauchy-approximations-Metric-Space A) ( map-swap-cauchy-approximation-Metric-Space) is-cauchy-map-swap-cauchy-approximation-Metric-Space ε δ η = is-cauchy-approximation-map-cauchy-approximation-Metric-Space ( A) ( map-cauchy-approximation-Metric-Space ( metric-space-of-cauchy-approximations-Metric-Space A) ( U) ( η)) ( ε) ( δ) swap-cauchy-approximation-Metric-Space : cauchy-approximation-Metric-Space ( metric-space-of-cauchy-approximations-Metric-Space A) swap-cauchy-approximation-Metric-Space = ( map-swap-cauchy-approximation-Metric-Space , is-cauchy-map-swap-cauchy-approximation-Metric-Space)
Swapping the arguments of a Cauchy approximation of Cauchy approximations is an involution
module _ { l1 l2 : Level} (A : Metric-Space l1 l2) where is-involution-swap-cauchy-approximation-Metric-Space : is-involution ( swap-cauchy-approximation-Metric-Space A) is-involution-swap-cauchy-approximation-Metric-Space U = eq-htpy-cauchy-approximation-Metric-Space ( metric-space-of-cauchy-approximations-Metric-Space A) ( λ ε → eq-htpy-cauchy-approximation-Metric-Space ( A) ( λ δ → refl)) is-equiv-swap-cauchy-approximation-Metric-Space : is-equiv (swap-cauchy-approximation-Metric-Space A) is-equiv-swap-cauchy-approximation-Metric-Space = is-equiv-is-involution is-involution-swap-cauchy-approximation-Metric-Space equiv-swap-cauchy-approximation-Metric-Space : ( cauchy-approximation-Metric-Space ( metric-space-of-cauchy-approximations-Metric-Space A)) ≃ ( cauchy-approximation-Metric-Space ( metric-space-of-cauchy-approximations-Metric-Space A)) equiv-swap-cauchy-approximation-Metric-Space = ( swap-cauchy-approximation-Metric-Space A , is-equiv-swap-cauchy-approximation-Metric-Space)
Swapping the arguments of a Cauchy approximation of Cauchy approximations is a short map
module _ { l1 l2 : Level} (A : Metric-Space l1 l2) where is-short-swap-cauchy-approximation-Metric-Space : is-short-function-Metric-Space ( metric-space-of-cauchy-approximations-Metric-Space ( metric-space-of-cauchy-approximations-Metric-Space A)) ( metric-space-of-cauchy-approximations-Metric-Space ( metric-space-of-cauchy-approximations-Metric-Space A)) ( swap-cauchy-approximation-Metric-Space A) is-short-swap-cauchy-approximation-Metric-Space ε U V Nuv δ η = Nuv η δ
Swapping the arguments of a Cauchy approximation of Cauchy approximations is an isometry
module _ { l1 l2 : Level} (A : Metric-Space l1 l2) where is-isometry-swap-cauchy-approximation-Metric-Space : is-isometry-Metric-Space ( metric-space-of-cauchy-approximations-Metric-Space ( metric-space-of-cauchy-approximations-Metric-Space A)) ( metric-space-of-cauchy-approximations-Metric-Space ( metric-space-of-cauchy-approximations-Metric-Space A)) ( swap-cauchy-approximation-Metric-Space A) is-isometry-swap-cauchy-approximation-Metric-Space ε U V = ( is-short-swap-cauchy-approximation-Metric-Space A ε U V , is-short-swap-cauchy-approximation-Metric-Space ( A) ( ε) ( swap-cauchy-approximation-Metric-Space A U) ( swap-cauchy-approximation-Metric-Space A V))
Swapping the arguments of a Cauchy approximation of Cauchy approximations is an isometric equivalence
module _ { l1 l2 : Level} (A : Metric-Space l1 l2) where isometric-equiv-swap-cauchy-approximation-Metric-Space : isometric-equiv-Metric-Space ( metric-space-of-cauchy-approximations-Metric-Space ( metric-space-of-cauchy-approximations-Metric-Space A)) ( metric-space-of-cauchy-approximations-Metric-Space ( metric-space-of-cauchy-approximations-Metric-Space A)) isometric-equiv-swap-cauchy-approximation-Metric-Space = ( equiv-swap-cauchy-approximation-Metric-Space A , is-isometry-swap-cauchy-approximation-Metric-Space A)
Recent changes
- 2025-08-18. malarbol and Louis Wasserman. Refactor metric spaces (#1450).
- 2025-05-01. malarbol. The short map from a convergent Cauchy approximation in a saturated metric space to its limit (#1402).