Right modules over rings
Content created by Louis Wasserman and malarbol.
Created on 2025-05-18.
Last modified on 2025-05-18.
module linear-algebra.right-modules-rings where
Imports
open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.propositions open import foundation.sets open import foundation.universe-levels open import group-theory.abelian-groups open import group-theory.addition-homomorphisms-abelian-groups open import group-theory.endomorphism-rings-abelian-groups open import group-theory.homomorphisms-abelian-groups open import ring-theory.homomorphisms-rings open import ring-theory.opposite-rings open import ring-theory.rings
Idea
A
right module¶
over a ring R
consists of an
abelian group M
equipped with a
ring homomorphism from R
to the
opposite ring of the
endomorphism ring of M
.
Definitions
Right modules over rings
right-module-Ring : {l1 : Level} (l2 : Level) (R : Ring l1) → UU (l1 ⊔ lsuc l2) right-module-Ring l2 R = Σ (Ab l2) (λ A → hom-Ring R (op-Ring (endomorphism-ring-Ab A))) module _ {l1 l2 : Level} (R : Ring l1) (M : right-module-Ring l2 R) where ab-right-module-Ring : Ab l2 ab-right-module-Ring = pr1 M set-right-module-Ring : Set l2 set-right-module-Ring = set-Ab ab-right-module-Ring type-right-module-Ring : UU l2 type-right-module-Ring = type-Ab ab-right-module-Ring add-right-module-Ring : (x y : type-right-module-Ring) → type-right-module-Ring add-right-module-Ring = add-Ab ab-right-module-Ring zero-right-module-Ring : type-right-module-Ring zero-right-module-Ring = zero-Ab ab-right-module-Ring neg-right-module-Ring : type-right-module-Ring → type-right-module-Ring neg-right-module-Ring = neg-Ab ab-right-module-Ring endomorphism-ring-ab-right-module-Ring : Ring l2 endomorphism-ring-ab-right-module-Ring = endomorphism-ring-Ab ab-right-module-Ring mul-hom-right-module-Ring : hom-Ring R (op-Ring endomorphism-ring-ab-right-module-Ring) mul-hom-right-module-Ring = pr2 M mul-right-module-Ring : type-Ring R → type-right-module-Ring → type-right-module-Ring mul-right-module-Ring x = map-hom-Ab ( ab-right-module-Ring) ( ab-right-module-Ring) ( map-hom-Ring R ( op-Ring endomorphism-ring-ab-right-module-Ring) ( mul-hom-right-module-Ring) ( x))
Properties
Associativity of addition
module _ {l1 l2 : Level} (R : Ring l1) (M : right-module-Ring l2 R) where associative-add-right-module-Ring : (x y z : type-right-module-Ring R M) → Id ( add-right-module-Ring R M (add-right-module-Ring R M x y) z) ( add-right-module-Ring R M x (add-right-module-Ring R M y z)) associative-add-right-module-Ring = associative-add-Ab (ab-right-module-Ring R M)
Unit laws for addition
module _ {l1 l2 : Level} (R : Ring l1) (M : right-module-Ring l2 R) where left-unit-law-add-right-module-Ring : (x : type-right-module-Ring R M) → Id (add-right-module-Ring R M (zero-right-module-Ring R M) x) x left-unit-law-add-right-module-Ring = left-unit-law-add-Ab (ab-right-module-Ring R M) right-unit-law-add-right-module-Ring : (x : type-right-module-Ring R M) → Id (add-right-module-Ring R M x (zero-right-module-Ring R M)) x right-unit-law-add-right-module-Ring = right-unit-law-add-Ab (ab-right-module-Ring R M)
Inverse laws for addition
module _ {l1 l2 : Level} (R : Ring l1) (M : right-module-Ring l2 R) where left-inverse-law-add-right-module-Ring : (x : type-right-module-Ring R M) → Id ( add-right-module-Ring R M (neg-right-module-Ring R M x) x) ( zero-right-module-Ring R M) left-inverse-law-add-right-module-Ring = left-inverse-law-add-Ab (ab-right-module-Ring R M) right-inverse-law-add-right-module-Ring : (x : type-right-module-Ring R M) → Id ( add-right-module-Ring R M x (neg-right-module-Ring R M x)) ( zero-right-module-Ring R M) right-inverse-law-add-right-module-Ring = right-inverse-law-add-Ab (ab-right-module-Ring R M)
Unit laws for multiplication
module _ {l1 l2 : Level} (R : Ring l1) (M : right-module-Ring l2 R) where left-unit-law-mul-right-module-Ring : (x : type-right-module-Ring R M) → Id ( mul-right-module-Ring R M (one-Ring R) x) x left-unit-law-mul-right-module-Ring = htpy-eq-hom-Ab ( ab-right-module-Ring R M) ( ab-right-module-Ring R M) ( map-hom-Ring R ( op-Ring (endomorphism-ring-ab-right-module-Ring R M)) ( mul-hom-right-module-Ring R M) ( one-Ring R)) ( id-hom-Ab ( ab-right-module-Ring R M)) ( preserves-one-hom-Ring R ( op-Ring (endomorphism-ring-ab-right-module-Ring R M)) ( mul-hom-right-module-Ring R M))
Distributive laws for multiplication over addition
module _ {l1 l2 : Level} (R : Ring l1) (M : right-module-Ring l2 R) where left-distributive-mul-add-right-module-Ring : (r : type-Ring R) (x y : type-right-module-Ring R M) → Id ( mul-right-module-Ring R M r (add-right-module-Ring R M x y)) ( add-right-module-Ring R M ( mul-right-module-Ring R M r x) ( mul-right-module-Ring R M r y)) left-distributive-mul-add-right-module-Ring r x y = preserves-add-hom-Ab ( ab-right-module-Ring R M) ( ab-right-module-Ring R M) ( map-hom-Ring R ( op-Ring (endomorphism-ring-ab-right-module-Ring R M)) ( mul-hom-right-module-Ring R M) ( r)) right-distributive-mul-add-right-module-Ring : (r s : type-Ring R) (x : type-right-module-Ring R M) → Id ( mul-right-module-Ring R M (add-Ring R r s) x) ( add-right-module-Ring R M ( mul-right-module-Ring R M r x) ( mul-right-module-Ring R M s x)) right-distributive-mul-add-right-module-Ring r s = htpy-eq-hom-Ab ( ab-right-module-Ring R M) ( ab-right-module-Ring R M) ( map-hom-Ring R ( op-Ring (endomorphism-ring-ab-right-module-Ring R M)) ( mul-hom-right-module-Ring R M) ( add-Ring R r s)) ( add-hom-Ab ( ab-right-module-Ring R M) ( ab-right-module-Ring R M) ( map-hom-Ring R ( op-Ring (endomorphism-ring-ab-right-module-Ring R M)) ( mul-hom-right-module-Ring R M) ( r)) ( map-hom-Ring R ( op-Ring (endomorphism-ring-ab-right-module-Ring R M)) ( mul-hom-right-module-Ring R M) ( s))) ( preserves-add-hom-Ring R ( op-Ring (endomorphism-ring-ab-right-module-Ring R M)) ( mul-hom-right-module-Ring R M))
Associative laws for multiplication
module _ {l1 l2 : Level} (R : Ring l1) (M : right-module-Ring l2 R) where associative-mul-right-module-Ring : (r s : type-Ring R) (x : type-right-module-Ring R M) → Id ( mul-right-module-Ring R M (mul-Ring R r s) x) ( mul-right-module-Ring R M s (mul-right-module-Ring R M r x)) associative-mul-right-module-Ring r s = htpy-eq-hom-Ab ( ab-right-module-Ring R M) ( ab-right-module-Ring R M) ( map-hom-Ring R ( op-Ring (endomorphism-ring-ab-right-module-Ring R M)) ( mul-hom-right-module-Ring R M) ( mul-Ring R r s)) ( comp-hom-Ab ( ab-right-module-Ring R M) ( ab-right-module-Ring R M) ( ab-right-module-Ring R M) ( map-hom-Ring R ( op-Ring (endomorphism-ring-ab-right-module-Ring R M)) ( mul-hom-right-module-Ring R M) ( s)) ( map-hom-Ring R ( op-Ring (endomorphism-ring-ab-right-module-Ring R M)) ( mul-hom-right-module-Ring R M) ( r))) ( preserves-mul-hom-Ring R ( op-Ring (endomorphism-ring-ab-right-module-Ring R M)) ( mul-hom-right-module-Ring R M))
Zero laws for multiplication
module _ {l1 l2 : Level} (R : Ring l1) (M : right-module-Ring l2 R) where left-zero-law-mul-right-module-Ring : (x : type-right-module-Ring R M) → Id (mul-right-module-Ring R M (zero-Ring R) x) (zero-right-module-Ring R M) left-zero-law-mul-right-module-Ring = htpy-eq-hom-Ab ( ab-right-module-Ring R M) ( ab-right-module-Ring R M) ( map-hom-Ring R ( op-Ring (endomorphism-ring-ab-right-module-Ring R M)) ( mul-hom-right-module-Ring R M) ( zero-Ring R)) ( zero-hom-Ab (ab-right-module-Ring R M) (ab-right-module-Ring R M)) ( preserves-zero-hom-Ring R ( op-Ring (endomorphism-ring-ab-right-module-Ring R M)) ( mul-hom-right-module-Ring R M)) right-zero-law-mul-right-module-Ring : (r : type-Ring R) → Id ( mul-right-module-Ring R M r (zero-right-module-Ring R M)) ( zero-right-module-Ring R M) right-zero-law-mul-right-module-Ring r = preserves-zero-hom-Ab ( ab-right-module-Ring R M) ( ab-right-module-Ring R M) ( map-hom-Ring R ( op-Ring (endomorphism-ring-ab-right-module-Ring R M)) ( mul-hom-right-module-Ring R M) ( r))
Negative laws for multiplication
module _ {l1 l2 : Level} (R : Ring l1) (M : right-module-Ring l2 R) where left-negative-law-mul-right-module-Ring : (r : type-Ring R) (x : type-right-module-Ring R M) → Id ( mul-right-module-Ring R M (neg-Ring R r) x) ( neg-right-module-Ring R M (mul-right-module-Ring R M r x)) left-negative-law-mul-right-module-Ring r = htpy-eq-hom-Ab ( ab-right-module-Ring R M) ( ab-right-module-Ring R M) ( map-hom-Ring R ( op-Ring (endomorphism-ring-ab-right-module-Ring R M)) ( mul-hom-right-module-Ring R M) ( neg-Ring R r)) ( neg-hom-Ab ( ab-right-module-Ring R M) ( ab-right-module-Ring R M) ( map-hom-Ring R ( op-Ring (endomorphism-ring-ab-right-module-Ring R M)) ( mul-hom-right-module-Ring R M) ( r))) ( preserves-neg-hom-Ring R ( op-Ring (endomorphism-ring-ab-right-module-Ring R M)) ( mul-hom-right-module-Ring R M)) right-negative-law-mul-right-module-Ring : (r : type-Ring R) (x : type-right-module-Ring R M) → Id ( mul-right-module-Ring R M r (neg-right-module-Ring R M x)) ( neg-right-module-Ring R M (mul-right-module-Ring R M r x)) right-negative-law-mul-right-module-Ring r x = preserves-negatives-hom-Ab ( ab-right-module-Ring R M) ( ab-right-module-Ring R M) ( map-hom-Ring R ( op-Ring (endomorphism-ring-ab-right-module-Ring R M)) ( mul-hom-right-module-Ring R M) ( r))
Multiplying by the negation of the one of the ring is negation
module _ {l1 l2 : Level} (R : Ring l1) (M : right-module-Ring l2 R) where abstract mul-neg-one-right-module-Ring : (x : type-right-module-Ring R M) → mul-right-module-Ring R M (neg-Ring R (one-Ring R)) x = neg-right-module-Ring R M x mul-neg-one-right-module-Ring x = ( left-negative-law-mul-right-module-Ring R M _ _) ∙ ( ap ( neg-right-module-Ring R M) ( left-unit-law-mul-right-module-Ring R M x))
External links
- Right module at Wikidata
Recent changes
- 2025-05-18. Louis Wasserman and malarbol. Linear maps over modules (#1395).