Right modules over rings

Content created by Louis Wasserman and malarbol.

Created on 2025-05-18.
Last modified on 2025-05-18.

module linear-algebra.right-modules-rings where
Imports
open import foundation.action-on-identifications-functions
open import foundation.dependent-pair-types
open import foundation.identity-types
open import foundation.propositions
open import foundation.sets
open import foundation.universe-levels

open import group-theory.abelian-groups
open import group-theory.addition-homomorphisms-abelian-groups
open import group-theory.endomorphism-rings-abelian-groups
open import group-theory.homomorphisms-abelian-groups

open import ring-theory.homomorphisms-rings
open import ring-theory.opposite-rings
open import ring-theory.rings

Idea

A right module over a ring R consists of an abelian group M equipped with a ring homomorphism from R to the opposite ring of the endomorphism ring of M.

Definitions

Right modules over rings

right-module-Ring :
  {l1 : Level} (l2 : Level) (R : Ring l1)  UU (l1  lsuc l2)
right-module-Ring l2 R =
  Σ (Ab l2)  A  hom-Ring R (op-Ring (endomorphism-ring-Ab A)))

module _
  {l1 l2 : Level} (R : Ring l1) (M : right-module-Ring l2 R)
  where

  ab-right-module-Ring : Ab l2
  ab-right-module-Ring = pr1 M

  set-right-module-Ring : Set l2
  set-right-module-Ring = set-Ab ab-right-module-Ring

  type-right-module-Ring : UU l2
  type-right-module-Ring = type-Ab ab-right-module-Ring

  add-right-module-Ring :
    (x y : type-right-module-Ring)  type-right-module-Ring
  add-right-module-Ring = add-Ab ab-right-module-Ring

  zero-right-module-Ring : type-right-module-Ring
  zero-right-module-Ring = zero-Ab ab-right-module-Ring

  neg-right-module-Ring : type-right-module-Ring  type-right-module-Ring
  neg-right-module-Ring = neg-Ab ab-right-module-Ring

  endomorphism-ring-ab-right-module-Ring : Ring l2
  endomorphism-ring-ab-right-module-Ring =
    endomorphism-ring-Ab ab-right-module-Ring

  mul-hom-right-module-Ring :
    hom-Ring R (op-Ring endomorphism-ring-ab-right-module-Ring)
  mul-hom-right-module-Ring = pr2 M

  mul-right-module-Ring :
    type-Ring R  type-right-module-Ring  type-right-module-Ring
  mul-right-module-Ring x =
    map-hom-Ab
      ( ab-right-module-Ring)
      ( ab-right-module-Ring)
      ( map-hom-Ring R
        ( op-Ring endomorphism-ring-ab-right-module-Ring)
        ( mul-hom-right-module-Ring)
        ( x))

Properties

Associativity of addition

module _
  {l1 l2 : Level} (R : Ring l1) (M : right-module-Ring l2 R)
  where

  associative-add-right-module-Ring :
    (x y z : type-right-module-Ring R M) 
    Id
      ( add-right-module-Ring R M (add-right-module-Ring R M x y) z)
      ( add-right-module-Ring R M x (add-right-module-Ring R M y z))
  associative-add-right-module-Ring =
    associative-add-Ab (ab-right-module-Ring R M)

Unit laws for addition

module _
  {l1 l2 : Level} (R : Ring l1) (M : right-module-Ring l2 R)
  where

  left-unit-law-add-right-module-Ring :
    (x : type-right-module-Ring R M) 
    Id (add-right-module-Ring R M (zero-right-module-Ring R M) x) x
  left-unit-law-add-right-module-Ring =
    left-unit-law-add-Ab (ab-right-module-Ring R M)

  right-unit-law-add-right-module-Ring :
    (x : type-right-module-Ring R M) 
    Id (add-right-module-Ring R M x (zero-right-module-Ring R M)) x
  right-unit-law-add-right-module-Ring =
    right-unit-law-add-Ab (ab-right-module-Ring R M)

Inverse laws for addition

module _
  {l1 l2 : Level} (R : Ring l1) (M : right-module-Ring l2 R)
  where

  left-inverse-law-add-right-module-Ring :
    (x : type-right-module-Ring R M) 
    Id
      ( add-right-module-Ring R M (neg-right-module-Ring R M x) x)
      ( zero-right-module-Ring R M)
  left-inverse-law-add-right-module-Ring =
    left-inverse-law-add-Ab (ab-right-module-Ring R M)

  right-inverse-law-add-right-module-Ring :
    (x : type-right-module-Ring R M) 
    Id
      ( add-right-module-Ring R M x (neg-right-module-Ring R M x))
      ( zero-right-module-Ring R M)
  right-inverse-law-add-right-module-Ring =
    right-inverse-law-add-Ab (ab-right-module-Ring R M)

Unit laws for multiplication

module _
  {l1 l2 : Level} (R : Ring l1) (M : right-module-Ring l2 R)
  where

  left-unit-law-mul-right-module-Ring :
    (x : type-right-module-Ring R M) 
    Id ( mul-right-module-Ring R M (one-Ring R) x) x
  left-unit-law-mul-right-module-Ring =
    htpy-eq-hom-Ab
      ( ab-right-module-Ring R M)
      ( ab-right-module-Ring R M)
      ( map-hom-Ring R
        ( op-Ring (endomorphism-ring-ab-right-module-Ring R M))
        ( mul-hom-right-module-Ring R M)
        ( one-Ring R))
      ( id-hom-Ab ( ab-right-module-Ring R M))
      ( preserves-one-hom-Ring R
        ( op-Ring (endomorphism-ring-ab-right-module-Ring R M))
        ( mul-hom-right-module-Ring R M))

Distributive laws for multiplication over addition

module _
  {l1 l2 : Level} (R : Ring l1) (M : right-module-Ring l2 R)
  where

  left-distributive-mul-add-right-module-Ring :
    (r : type-Ring R) (x y : type-right-module-Ring R M) 
    Id
      ( mul-right-module-Ring R M r (add-right-module-Ring R M x y))
      ( add-right-module-Ring R M
        ( mul-right-module-Ring R M r x)
        ( mul-right-module-Ring R M r y))
  left-distributive-mul-add-right-module-Ring r x y =
    preserves-add-hom-Ab
      ( ab-right-module-Ring R M)
      ( ab-right-module-Ring R M)
      ( map-hom-Ring R
        ( op-Ring (endomorphism-ring-ab-right-module-Ring R M))
        ( mul-hom-right-module-Ring R M)
        ( r))

  right-distributive-mul-add-right-module-Ring :
    (r s : type-Ring R) (x : type-right-module-Ring R M) 
    Id
      ( mul-right-module-Ring R M (add-Ring R r s) x)
      ( add-right-module-Ring R M
        ( mul-right-module-Ring R M r x)
        ( mul-right-module-Ring R M s x))
  right-distributive-mul-add-right-module-Ring r s =
    htpy-eq-hom-Ab
      ( ab-right-module-Ring R M)
      ( ab-right-module-Ring R M)
      ( map-hom-Ring R
        ( op-Ring (endomorphism-ring-ab-right-module-Ring R M))
        ( mul-hom-right-module-Ring R M)
        ( add-Ring R r s))
      ( add-hom-Ab
        ( ab-right-module-Ring R M)
        ( ab-right-module-Ring R M)
        ( map-hom-Ring R
          ( op-Ring (endomorphism-ring-ab-right-module-Ring R M))
          ( mul-hom-right-module-Ring R M)
          ( r))
        ( map-hom-Ring R
          ( op-Ring (endomorphism-ring-ab-right-module-Ring R M))
          ( mul-hom-right-module-Ring R M)
          ( s)))
      ( preserves-add-hom-Ring R
        ( op-Ring (endomorphism-ring-ab-right-module-Ring R M))
        ( mul-hom-right-module-Ring R M))

Associative laws for multiplication

module _
  {l1 l2 : Level} (R : Ring l1) (M : right-module-Ring l2 R)
  where

  associative-mul-right-module-Ring :
    (r s : type-Ring R) (x : type-right-module-Ring R M) 
    Id
      ( mul-right-module-Ring R M (mul-Ring R r s) x)
      ( mul-right-module-Ring R M s (mul-right-module-Ring R M r x))
  associative-mul-right-module-Ring r s =
    htpy-eq-hom-Ab
      ( ab-right-module-Ring R M)
      ( ab-right-module-Ring R M)
      ( map-hom-Ring R
        ( op-Ring (endomorphism-ring-ab-right-module-Ring R M))
        ( mul-hom-right-module-Ring R M)
        ( mul-Ring R r s))
      ( comp-hom-Ab
        ( ab-right-module-Ring R M)
        ( ab-right-module-Ring R M)
        ( ab-right-module-Ring R M)
        ( map-hom-Ring R
          ( op-Ring (endomorphism-ring-ab-right-module-Ring R M))
          ( mul-hom-right-module-Ring R M)
          ( s))
        ( map-hom-Ring R
          ( op-Ring (endomorphism-ring-ab-right-module-Ring R M))
          ( mul-hom-right-module-Ring R M)
          ( r)))
      ( preserves-mul-hom-Ring R
        ( op-Ring (endomorphism-ring-ab-right-module-Ring R M))
        ( mul-hom-right-module-Ring R M))

Zero laws for multiplication

module _
  {l1 l2 : Level} (R : Ring l1) (M : right-module-Ring l2 R)
  where

  left-zero-law-mul-right-module-Ring :
    (x : type-right-module-Ring R M) 
    Id (mul-right-module-Ring R M (zero-Ring R) x) (zero-right-module-Ring R M)
  left-zero-law-mul-right-module-Ring =
    htpy-eq-hom-Ab
      ( ab-right-module-Ring R M)
      ( ab-right-module-Ring R M)
      ( map-hom-Ring R
        ( op-Ring (endomorphism-ring-ab-right-module-Ring R M))
        ( mul-hom-right-module-Ring R M)
        ( zero-Ring R))
      ( zero-hom-Ab (ab-right-module-Ring R M) (ab-right-module-Ring R M))
      ( preserves-zero-hom-Ring R
        ( op-Ring (endomorphism-ring-ab-right-module-Ring R M))
        ( mul-hom-right-module-Ring R M))

  right-zero-law-mul-right-module-Ring :
    (r : type-Ring R) 
    Id
      ( mul-right-module-Ring R M r (zero-right-module-Ring R M))
      ( zero-right-module-Ring R M)
  right-zero-law-mul-right-module-Ring r =
    preserves-zero-hom-Ab
      ( ab-right-module-Ring R M)
      ( ab-right-module-Ring R M)
      ( map-hom-Ring R
        ( op-Ring (endomorphism-ring-ab-right-module-Ring R M))
        ( mul-hom-right-module-Ring R M)
        ( r))

Negative laws for multiplication

module _
  {l1 l2 : Level} (R : Ring l1) (M : right-module-Ring l2 R)
  where

  left-negative-law-mul-right-module-Ring :
    (r : type-Ring R) (x : type-right-module-Ring R M) 
    Id
      ( mul-right-module-Ring R M (neg-Ring R r) x)
      ( neg-right-module-Ring R M (mul-right-module-Ring R M r x))
  left-negative-law-mul-right-module-Ring r =
    htpy-eq-hom-Ab
      ( ab-right-module-Ring R M)
      ( ab-right-module-Ring R M)
      ( map-hom-Ring R
        ( op-Ring (endomorphism-ring-ab-right-module-Ring R M))
        ( mul-hom-right-module-Ring R M)
        ( neg-Ring R r))
      ( neg-hom-Ab
        ( ab-right-module-Ring R M)
        ( ab-right-module-Ring R M)
        ( map-hom-Ring R
          ( op-Ring (endomorphism-ring-ab-right-module-Ring R M))
          ( mul-hom-right-module-Ring R M)
          ( r)))
      ( preserves-neg-hom-Ring R
        ( op-Ring (endomorphism-ring-ab-right-module-Ring R M))
        ( mul-hom-right-module-Ring R M))

  right-negative-law-mul-right-module-Ring :
    (r : type-Ring R) (x : type-right-module-Ring R M) 
    Id
      ( mul-right-module-Ring R M r (neg-right-module-Ring R M x))
      ( neg-right-module-Ring R M (mul-right-module-Ring R M r x))
  right-negative-law-mul-right-module-Ring r x =
    preserves-negatives-hom-Ab
      ( ab-right-module-Ring R M)
      ( ab-right-module-Ring R M)
      ( map-hom-Ring R
        ( op-Ring (endomorphism-ring-ab-right-module-Ring R M))
        ( mul-hom-right-module-Ring R M)
        ( r))

Multiplying by the negation of the one of the ring is negation

module _
  {l1 l2 : Level} (R : Ring l1) (M : right-module-Ring l2 R)
  where

  abstract
    mul-neg-one-right-module-Ring :
      (x : type-right-module-Ring R M) 
      mul-right-module-Ring R M (neg-Ring R (one-Ring R)) x 
      neg-right-module-Ring R M x
    mul-neg-one-right-module-Ring x =
      ( left-negative-law-mul-right-module-Ring R M _ _) 
      ( ap
        ( neg-right-module-Ring R M)
        ( left-unit-law-mul-right-module-Ring R M x))

Recent changes