Strict preorders
Content created by Egbert Rijke and Fredrik Bakke.
Created on 2025-02-09.
Last modified on 2025-05-02.
module order-theory.strict-preorders where
Imports
open import foundation.binary-relations open import foundation.cartesian-product-types open import foundation.dependent-pair-types open import foundation.empty-types open import foundation.negation open import foundation.propositions open import foundation.universe-levels
Idea
A strict preorder¶ consists of a type , a binary relation on valued in the propositions, such that the relation is irreflexive and transitive:
- For any we have .
- For any we have .
Note that strict preorders satisfy antisymmetry by irreflexivity and transitivity, but this is not the correct extensionality principle for strict preorders. The correct extensionality principle is considered on the page on strict orders.
Definitions
The type of strict preorders
Strict-Preorder : (l1 l2 : Level) → UU (lsuc l1 ⊔ lsuc l2) Strict-Preorder l1 l2 = Σ ( UU l1) ( λ A → Σ ( Relation-Prop l2 A) ( λ R → is-irreflexive-Relation-Prop R × is-transitive-Relation-Prop R)) module _ {l1 l2 : Level} (A : Strict-Preorder l1 l2) where type-Strict-Preorder : UU l1 type-Strict-Preorder = pr1 A le-prop-Strict-Preorder : Relation-Prop l2 type-Strict-Preorder le-prop-Strict-Preorder = pr1 (pr2 A) le-Strict-Preorder : Relation l2 type-Strict-Preorder le-Strict-Preorder = type-Relation-Prop le-prop-Strict-Preorder is-prop-le-Strict-Preorder : (x y : type-Strict-Preorder) → is-prop (le-Strict-Preorder x y) is-prop-le-Strict-Preorder = is-prop-type-Relation-Prop le-prop-Strict-Preorder is-irreflexive-le-Strict-Preorder : is-irreflexive le-Strict-Preorder is-irreflexive-le-Strict-Preorder = pr1 (pr2 (pr2 A)) is-transitive-le-Strict-Preorder : is-transitive le-Strict-Preorder is-transitive-le-Strict-Preorder = pr2 (pr2 (pr2 A))
Properties
The ordering of a strict preorder is antisymmetric
module _ {l1 l2 : Level} (A : Strict-Preorder l1 l2) where is-antisymmetric-le-Strict-Preorder : is-antisymmetric (le-Strict-Preorder A) is-antisymmetric-le-Strict-Preorder x y H K = ex-falso ( is-irreflexive-le-Strict-Preorder A x ( is-transitive-le-Strict-Preorder A x y x K H))
Recent changes
- 2025-05-02. Fredrik Bakke. Strict orders (#1419).
- 2025-02-09. Egbert Rijke. Strict preorders (#1308).