Strict preorders
Content created by Egbert Rijke.
Created on 2025-02-09.
Last modified on 2025-02-09.
module order-theory.strict-preorders where
Imports
open import foundation.binary-relations open import foundation.cartesian-product-types open import foundation.dependent-pair-types open import foundation.empty-types open import foundation.negation open import foundation.propositions open import foundation.universe-levels
Idea
A strict preorder¶ consists of a type , a binary relation on valued in the propositions, such that the relation is irreflexive and transitive:
- For any we have x \nle x.
- For any we have .
Strict preorders satisfy antisymmetry by irreflexivity and transitivity.
Definitions
The type of strict preorders
Strict-Preorder : (l1 l2 : Level) → UU (lsuc l1 ⊔ lsuc l2) Strict-Preorder l1 l2 = Σ ( UU l1) ( λ A → Σ ( Relation-Prop l2 A) ( λ R → is-irreflexive-Relation-Prop R × is-transitive-Relation-Prop R)) module _ {l1 l2 : Level} (A : Strict-Preorder l1 l2) where type-Strict-Preorder : UU l1 type-Strict-Preorder = pr1 A le-prop-Strict-Preorder : Relation-Prop l2 type-Strict-Preorder le-prop-Strict-Preorder = pr1 (pr2 A) le-Strict-Preorder : Relation l2 type-Strict-Preorder le-Strict-Preorder = type-Relation-Prop le-prop-Strict-Preorder is-prop-le-Strict-Preorder : (x y : type-Strict-Preorder) → is-prop (le-Strict-Preorder x y) is-prop-le-Strict-Preorder = is-prop-type-Relation-Prop le-prop-Strict-Preorder is-irreflexive-le-Strict-Preorder : is-irreflexive le-Strict-Preorder is-irreflexive-le-Strict-Preorder = pr1 (pr2 (pr2 A)) is-transitive-le-Strict-Preorder : is-transitive le-Strict-Preorder is-transitive-le-Strict-Preorder = pr2 (pr2 (pr2 A))
Properties
The ordering of a strict preorder is antisymmetric
module _ {l1 l2 : Level} (A : Strict-Preorder l1 l2) where is-antisymmetric-le-Strict-Preorder : is-antisymmetric (le-Strict-Preorder A) is-antisymmetric-le-Strict-Preorder x y H K = ex-falso ( is-irreflexive-le-Strict-Preorder A x ( is-transitive-le-Strict-Preorder A x y x K H))
Recent changes
- 2025-02-09. Egbert Rijke. Strict preorders (#1308).