Quotient algebras
Content created by Fredrik Bakke, Egbert Rijke, Fernando Chu, Julian KG, fernabnor and louismntnu.
Created on 2023-03-20.
Last modified on 2023-11-24.
module universal-algebra.quotient-algebras where
Imports
open import elementary-number-theory.natural-numbers open import foundation.dependent-pair-types open import foundation.equivalence-classes open import foundation.equivalence-relations open import foundation.equivalences open import foundation.functoriality-propositional-truncation open import foundation.multivariable-functoriality-set-quotients open import foundation.multivariable-operations open import foundation.propositional-truncations open import foundation.propositions open import foundation.set-quotients open import foundation.sets open import foundation.unit-type open import foundation.universe-levels open import foundation.vectors-set-quotients open import linear-algebra.vectors open import universal-algebra.algebraic-theories open import universal-algebra.algebras-of-theories open import universal-algebra.congruences open import universal-algebra.models-of-signatures open import universal-algebra.signatures
Idea
The quotient of an algebra by a congruence is the set quotient by that congruence. This quotient again has the structure of an algebra inherited by the original one.
Definitions
module _ { l1 : Level} ( Sg : signature l1) { l2 : Level} ( Th : Theory Sg l2) { l3 : Level} ( Alg : Algebra Sg Th l3) { l4 : Level} ( R : congruence-Algebra Sg Th Alg l4) where set-quotient-Algebra : Set (l3 ⊔ l4) set-quotient-Algebra = quotient-Set ( equivalence-relation-congruence-Algebra Sg Th Alg R) type-quotient-Algebra : UU (l3 ⊔ l4) type-quotient-Algebra = pr1 set-quotient-Algebra is-set-set-quotient-Algebra : is-set type-quotient-Algebra is-set-set-quotient-Algebra = pr2 set-quotient-Algebra compute-quotient-Algebra : equivalence-class ( equivalence-relation-congruence-Algebra Sg Th Alg R) ≃ ( type-quotient-Algebra) compute-quotient-Algebra = compute-set-quotient ( equivalence-relation-congruence-Algebra Sg Th Alg R) set-quotient-equivalence-class-Algebra : equivalence-class ( equivalence-relation-congruence-Algebra Sg Th Alg R) → type-quotient-Algebra set-quotient-equivalence-class-Algebra = map-equiv compute-quotient-Algebra equivalence-class-set-quotient-Algebra : type-quotient-Algebra → equivalence-class ( equivalence-relation-congruence-Algebra Sg Th Alg R) equivalence-class-set-quotient-Algebra = map-inv-equiv compute-quotient-Algebra vec-type-quotient-vec-type-Algebra : { n : ℕ} → vec type-quotient-Algebra n → type-trunc-Prop (vec (type-Algebra Sg Th Alg) n) vec-type-quotient-vec-type-Algebra empty-vec = unit-trunc-Prop empty-vec vec-type-quotient-vec-type-Algebra (x ∷ v) = map-universal-property-trunc-Prop ( trunc-Prop _) ( λ (z , p) → map-trunc-Prop (λ v' → z ∷ v') ( vec-type-quotient-vec-type-Algebra v)) ( pr2 (equivalence-class-set-quotient-Algebra x)) relation-holds-all-vec-all-sim-equivalence-relation : { n : ℕ} ( v v' : multivariable-input n ( λ _ → type-Algebra Sg Th Alg)) → ( type-Prop ( prop-equivalence-relation ( all-sim-equivalence-relation n ( λ _ → type-Algebra Sg Th Alg) ( λ _ → equivalence-relation-congruence-Algebra Sg Th Alg R)) v v')) → relation-holds-all-vec Sg Th Alg ( equivalence-relation-congruence-Algebra Sg Th Alg R) ( vector-multivariable-input n (type-Algebra Sg Th Alg) v) ( vector-multivariable-input n (type-Algebra Sg Th Alg) v') relation-holds-all-vec-all-sim-equivalence-relation {zero-ℕ} v v' p = raise-star relation-holds-all-vec-all-sim-equivalence-relation {succ-ℕ n} (x , v) (x' , v') (p , p') = p , (relation-holds-all-vec-all-sim-equivalence-relation v v' p') is-model-set-quotient-Algebra : is-model-signature Sg set-quotient-Algebra is-model-set-quotient-Algebra op v = multivariable-map-set-quotient ( arity-operation-signature Sg op) ( λ _ → type-Algebra Sg Th Alg) ( λ _ → equivalence-relation-congruence-Algebra Sg Th Alg R) ( equivalence-relation-congruence-Algebra Sg Th Alg R) ( pair ( λ v → is-model-set-Algebra Sg Th Alg op ( vector-multivariable-input ( arity-operation-signature Sg op) ( type-Algebra Sg Th Alg) ( v))) ( λ {v} {v'} p → preserves-operations-congruence-Algebra Sg Th Alg R op ( vector-multivariable-input ( arity-operation-signature Sg op) ( type-Algebra Sg Th Alg) ( v)) ( vector-multivariable-input ( arity-operation-signature Sg op) ( type-Algebra Sg Th Alg) ( v')) (relation-holds-all-vec-all-sim-equivalence-relation v v' p))) ( multivariable-input-vector ( arity-operation-signature Sg op) ( type-quotient-Algebra) ( v))
Recent changes
- 2023-11-24. Egbert Rijke. Abelianization (#877).
- 2023-06-25. Fredrik Bakke, louismntnu, fernabnor, Egbert Rijke and Julian KG. Posets are categories, and refactor binary relations (#665).
- 2023-05-01. Fredrik Bakke. Refactor 2, the sequel to refactor (#581).
- 2023-03-28. Fernando Chu. Final universal algebra (#544).
- 2023-03-21. Fredrik Bakke. Formatting fixes (#530).