The cross-multiplication difference of two rational numbers
Content created by malarbol.
Created on 2025-08-30.
Last modified on 2025-08-30.
module elementary-number-theory.cross-multiplication-difference-rational-numbers where
Imports
open import elementary-number-theory.addition-integers open import elementary-number-theory.cross-multiplication-difference-integer-fractions open import elementary-number-theory.difference-integers open import elementary-number-theory.inequality-rational-numbers open import elementary-number-theory.integer-fractions open import elementary-number-theory.integers open import elementary-number-theory.mediant-integer-fractions open import elementary-number-theory.multiplication-integers open import elementary-number-theory.nonnegative-integers open import elementary-number-theory.positive-integers open import elementary-number-theory.rational-numbers open import elementary-number-theory.strict-inequality-rational-numbers open import foundation.action-on-identifications-binary-functions open import foundation.action-on-identifications-functions open import foundation.binary-transport open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.negation open import foundation.propositions open import foundation.transport-along-identifications
Idea
The cross-multiplication difference¶ of two
rational numbers p
and q
is
the
cross-multiplication difference
of their reduced factions a/b
and c/d
, the
difference of the
products of the numerator
of each rational with the denominator of the other: c * b - a * d
.
Definitions
The cross-multiplication difference of two rational numbers
cross-mul-diff-ℚ : ℚ → ℚ → ℤ cross-mul-diff-ℚ p q = cross-mul-diff-fraction-ℤ ( fraction-ℚ p) ( fraction-ℚ q)
Properties
Swapping the arguments switches the sign of the cross-multiplication difference
abstract skew-commutative-cross-mul-diff-ℚ : (x y : ℚ) → neg-ℤ (cross-mul-diff-ℚ x y) = cross-mul-diff-ℚ y x skew-commutative-cross-mul-diff-ℚ x y = skew-commutative-cross-mul-diff-fraction-ℤ ( fraction-ℚ x) ( fraction-ℚ y)
The cross-multiplication difference of zero and a rational number is its numerator
module _ (x : ℚ) where abstract cross-mul-diff-zero-ℚ : cross-mul-diff-ℚ zero-ℚ x = numerator-ℚ x cross-mul-diff-zero-ℚ = cross-mul-diff-zero-fraction-ℤ (fraction-ℚ x)
The cross-multiplication difference of two rational numbers is zero if and only if they are equal
abstract is-zero-cross-mul-diff-eq-ℚ : (x y : ℚ) → x = y → is-zero-ℤ (cross-mul-diff-ℚ x y) is-zero-cross-mul-diff-eq-ℚ x .x refl = is-zero-cross-mul-diff-sim-fraction-ℤ ( fraction-ℚ x) ( fraction-ℚ x) ( refl-sim-fraction-ℤ (fraction-ℚ x)) eq-is-zero-cross-mul-diff-ℚ : (x y : ℚ) → is-zero-ℤ (cross-mul-diff-ℚ x y) → x = y eq-is-zero-cross-mul-diff-ℚ x y H = binary-tr ( Id) ( is-retraction-rational-fraction-ℚ x) ( is-retraction-rational-fraction-ℚ y) ( eq-ℚ-sim-fraction-ℤ ( fraction-ℚ x) ( fraction-ℚ y) ( sim-is-zero-coss-mul-diff-fraction-ℤ ( fraction-ℚ x) ( fraction-ℚ y) ( H)))
The cross-multiplication difference of p
and q
with p ≤ q
is nonnegative
module _ (p q : ℚ) where opaque unfolding leq-ℚ-Prop is-nonnegative-cross-mul-diff-leq-ℚ : leq-ℚ p q → is-nonnegative-ℤ (cross-mul-diff-ℚ p q) is-nonnegative-cross-mul-diff-leq-ℚ H = H leq-is-nonnegative-cross-mul-diff-ℚ : is-nonnegative-ℤ (cross-mul-diff-ℚ p q) → leq-ℚ p q leq-is-nonnegative-cross-mul-diff-ℚ H = H
The cross-multiplication difference of p
and q
with p < q
is positive
module _ (p q : ℚ) where opaque unfolding le-ℚ-Prop is-positive-cross-mul-diff-le-ℚ : le-ℚ p q → is-positive-ℤ (cross-mul-diff-ℚ p q) is-positive-cross-mul-diff-le-ℚ H = H le-is-positive-cross-mul-diff-ℚ : is-positive-ℤ (cross-mul-diff-ℚ p q) → le-ℚ p q le-is-positive-cross-mul-diff-ℚ H = H
External links
- Cross-multiplication at Wikipedia
Recent changes
- 2025-08-30. malarbol. Cross multiplication difference of rational numbers and other lemmas (#1508).