Dependent products of wild monoids

Content created by Egbert Rijke and Fredrik Bakke.

Created on 2023-09-13.
Last modified on 2023-09-15.

module structured-types.dependent-products-wild-monoids where
Imports
open import foundation.action-on-identifications-functions
open import foundation.dependent-pair-types
open import foundation.function-extensionality
open import foundation.homotopies
open import foundation.identity-types
open import foundation.unit-type
open import foundation.universe-levels

open import structured-types.dependent-products-h-spaces
open import structured-types.h-spaces
open import structured-types.pointed-types
open import structured-types.wild-monoids

Idea

Given a family of wild monoids Mᵢ indexed by i : I, the dependent product Π(i : I), Mᵢ is a wild monoid consisting of dependent functions taking i : I to an element of the underlying type of Mᵢ. Every component of the structure is given pointwise.

Definition

module _
  {l1 l2 : Level} (I : UU l1) (M : I  Wild-Monoid l2)
  where

  h-space-Π-Wild-Monoid : H-Space (l1  l2)
  h-space-Π-Wild-Monoid =
    Π-H-Space I  i  h-space-Wild-Monoid (M i))

  pointed-type-Π-Wild-Monoid : Pointed-Type (l1  l2)
  pointed-type-Π-Wild-Monoid =
    pointed-type-H-Space h-space-Π-Wild-Monoid

  type-Π-Wild-Monoid : UU (l1  l2)
  type-Π-Wild-Monoid = type-H-Space h-space-Π-Wild-Monoid

  unit-Π-Wild-Monoid : type-Π-Wild-Monoid
  unit-Π-Wild-Monoid = unit-H-Space h-space-Π-Wild-Monoid

  mul-Π-Wild-Monoid :
    type-Π-Wild-Monoid  type-Π-Wild-Monoid  type-Π-Wild-Monoid
  mul-Π-Wild-Monoid = mul-H-Space h-space-Π-Wild-Monoid

  left-unit-law-mul-Π-Wild-Monoid :
    (f : type-Π-Wild-Monoid)  (mul-Π-Wild-Monoid (unit-Π-Wild-Monoid) f)  f
  left-unit-law-mul-Π-Wild-Monoid =
    left-unit-law-mul-H-Space h-space-Π-Wild-Monoid

  right-unit-law-mul-Π-Wild-Monoid :
    (f : type-Π-Wild-Monoid)  (mul-Π-Wild-Monoid f (unit-Π-Wild-Monoid))  f
  right-unit-law-mul-Π-Wild-Monoid =
    right-unit-law-mul-H-Space h-space-Π-Wild-Monoid

  associator-Π-Wild-Monoid :
    associator-H-Space h-space-Π-Wild-Monoid
  associator-Π-Wild-Monoid f g h =
    eq-htpy  i  associator-Wild-Monoid (M i) (f i) (g i) (h i))

  unital-associator-Π-Wild-Monoid :
    unital-associator h-space-Π-Wild-Monoid
  pr1 unital-associator-Π-Wild-Monoid = associator-Π-Wild-Monoid
  pr1 (pr2 unital-associator-Π-Wild-Monoid) g h =
    ( inv
      ( eq-htpy-concat-htpy
        ( λ i  associator-Wild-Monoid (M i) (unit-Π-Wild-Monoid i) (g i) (h i))
        ( λ i 
          left-unit-law-mul-Wild-Monoid (M i) (mul-Π-Wild-Monoid g h i)))) 
    ( ap
      ( eq-htpy)
      ( eq-htpy
        ( λ i 
          pr1 (pr2 (unital-associator-Wild-Monoid (M i))) (g i) (h i)))) 
    ( compute-eq-htpy-ap  i  left-unit-law-mul-Wild-Monoid (M i) (g i)))
  pr1 (pr2 (pr2 unital-associator-Π-Wild-Monoid)) f h =
    ( ap
      ( associator-Π-Wild-Monoid f unit-Π-Wild-Monoid h ∙_)
      ( inv
        ( compute-eq-htpy-ap
          ( λ i  left-unit-law-mul-Wild-Monoid (M i) (h i))))) 
    ( inv
      ( eq-htpy-concat-htpy
        ( λ i 
          associator-Wild-Monoid (M i) (f i) (unit-Π-Wild-Monoid i) (h i))
        ( λ i 
          ap
            ( mul-Wild-Monoid (M i) (f i))
            ( left-unit-law-mul-Wild-Monoid (M i) (h i))))) 
    ( ap
      ( eq-htpy)
      ( eq-htpy
        ( λ i 
          pr1 (pr2 (pr2 (unital-associator-Wild-Monoid (M i)))) (f i) (h i)))) 
    ( compute-eq-htpy-ap  i  right-unit-law-mul-Wild-Monoid (M i) (f i)))
  pr1 (pr2 (pr2 (pr2 unital-associator-Π-Wild-Monoid))) f g =
    ( ap
      ( associator-Π-Wild-Monoid f g unit-Π-Wild-Monoid ∙_)
      ( inv
        ( compute-eq-htpy-ap
          ( λ i  right-unit-law-mul-Wild-Monoid (M i) (g i))))) 
    ( inv
      ( eq-htpy-concat-htpy
        ( λ i  associator-Wild-Monoid (M i) (f i) (g i) (unit-Π-Wild-Monoid i))
        ( λ i 
          ap
            ( mul-Wild-Monoid (M i) (f i))
            ( right-unit-law-mul-Wild-Monoid (M i) (g i))))) 
    ( ap
      ( eq-htpy)
      ( eq-htpy
        ( λ i 
          pr1
            ( pr2 (pr2 (pr2 (unital-associator-Wild-Monoid (M i)))))
            ( f i)
            ( g i))))
  pr2 (pr2 (pr2 (pr2 unital-associator-Π-Wild-Monoid))) = star

  Π-Wild-Monoid : Wild-Monoid (l1  l2)
  pr1 Π-Wild-Monoid = h-space-Π-Wild-Monoid
  pr2 Π-Wild-Monoid = unital-associator-Π-Wild-Monoid

Recent changes