Equality in the fibers of a map
Content created by Egbert Rijke, Fredrik Bakke, Jonathan Prieto-Cubides and Raymond Baker.
Created on 2022-01-26.
Last modified on 2024-02-06.
module foundation.equality-fibers-of-maps where
Imports
open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.transport-along-identifications open import foundation.universe-levels open import foundation-core.equality-dependent-pair-types open import foundation-core.equivalences open import foundation-core.families-of-equivalences open import foundation-core.fibers-of-maps open import foundation-core.function-types open import foundation-core.functoriality-dependent-pair-types open import foundation-core.homotopies
Idea
In the file
foundation-core.fibers-of-maps
we already
gave one characterization of the identity type of fiber f b
, for an arbitrary
map f : A → B
. Here we give a second characterization, using the fibers of the
action on identifications of f
.
Theorem
For any map f : A → B
any b : B
and any x y : fiber f b
, there is an
equivalence
(x = y) ≃ fiber (ap f) (pr2 x ∙ inv (pr2 y))
Proof
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) {b : B} where fiber-ap-eq-fiber-fiberwise : (s t : fiber f b) (p : pr1 s = pr1 t) → tr (λ (a : A) → f a = b) p (pr2 s) = pr2 t → ap f p = pr2 s ∙ inv (pr2 t) fiber-ap-eq-fiber-fiberwise (.x' , p) (x' , refl) refl = inv ∘ concat right-unit refl abstract is-fiberwise-equiv-fiber-ap-eq-fiber-fiberwise : (s t : fiber f b) → is-fiberwise-equiv (fiber-ap-eq-fiber-fiberwise s t) is-fiberwise-equiv-fiber-ap-eq-fiber-fiberwise (x , y) (.x , refl) refl = is-equiv-comp ( inv) ( concat right-unit refl) ( is-equiv-concat right-unit refl) ( is-equiv-inv (y ∙ refl) refl) fiber-ap-eq-fiber : (s t : fiber f b) → s = t → fiber (ap f {x = pr1 s} {y = pr1 t}) (pr2 s ∙ inv (pr2 t)) pr1 (fiber-ap-eq-fiber s .s refl) = refl pr2 (fiber-ap-eq-fiber s .s refl) = inv (right-inv (pr2 s)) triangle-fiber-ap-eq-fiber : (s t : fiber f b) → fiber-ap-eq-fiber s t ~ tot (fiber-ap-eq-fiber-fiberwise s t) ∘ pair-eq-Σ {s = s} {t} triangle-fiber-ap-eq-fiber (x , refl) .(x , refl) refl = refl abstract is-equiv-fiber-ap-eq-fiber : (s t : fiber f b) → is-equiv (fiber-ap-eq-fiber s t) is-equiv-fiber-ap-eq-fiber s t = is-equiv-left-map-triangle ( fiber-ap-eq-fiber s t) ( tot (fiber-ap-eq-fiber-fiberwise s t)) ( pair-eq-Σ {s = s} {t}) ( triangle-fiber-ap-eq-fiber s t) ( is-equiv-pair-eq-Σ s t) ( is-equiv-tot-is-fiberwise-equiv ( is-fiberwise-equiv-fiber-ap-eq-fiber-fiberwise s t)) equiv-fiber-ap-eq-fiber : (s t : fiber f b) → (s = t) ≃ fiber (ap f {x = pr1 s} {y = pr1 t}) (pr2 s ∙ inv (pr2 t)) pr1 (equiv-fiber-ap-eq-fiber s t) = fiber-ap-eq-fiber s t pr2 (equiv-fiber-ap-eq-fiber s t) = is-equiv-fiber-ap-eq-fiber s t map-inv-fiber-ap-eq-fiber : (s t : fiber f b) → fiber (ap f {x = pr1 s} {y = pr1 t}) (pr2 s ∙ inv (pr2 t)) → s = t map-inv-fiber-ap-eq-fiber (x , refl) (.x , p) (refl , u) = eq-pair-eq-fiber (ap inv u ∙ inv-inv p) ap-pr1-map-inv-fiber-ap-eq-fiber : (s t : fiber f b) → (v : fiber (ap f {x = pr1 s} {y = pr1 t}) (pr2 s ∙ inv (pr2 t))) → ap pr1 (map-inv-fiber-ap-eq-fiber s t v) = pr1 v ap-pr1-map-inv-fiber-ap-eq-fiber (x , refl) (.x , p) (refl , u) = ap-pr1-eq-pair-eq-fiber (ap inv u ∙ inv-inv p) module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) (x y : A) where eq-fiber-fiber-ap : (q : f x = f y) → (x , q) = (y , refl) → fiber (ap f {x} {y}) q eq-fiber-fiber-ap q = tr (fiber (ap f)) right-unit ∘ fiber-ap-eq-fiber f (x , q) (y , refl) abstract is-equiv-eq-fiber-fiber-ap : (q : (f x) = f y) → is-equiv (eq-fiber-fiber-ap q) is-equiv-eq-fiber-fiber-ap q = is-equiv-comp ( tr (fiber (ap f)) right-unit) ( fiber-ap-eq-fiber f (x , q) (y , refl)) ( is-equiv-fiber-ap-eq-fiber f (x , q) (y , refl)) ( is-equiv-tr (fiber (ap f)) right-unit)
Table of files about fibers of maps
The following table lists files that are about fibers of maps as a general concept.
Concept | File |
---|---|
Fibers of maps (foundation-core) | foundation-core.fibers-of-maps |
Fibers of maps (foundation) | foundation.fibers-of-maps |
Equality in the fibers of a map | foundation.equality-fibers-of-maps |
Functoriality of fibers of maps | foundation.functoriality-fibers-of-maps |
Fibers of pointed maps | structured-types.fibers-of-pointed-maps |
Fibers of maps of finite types | univalent-combinatorics.fibers-of-maps |
The universal property of the family of fibers of maps | foundation.universal-property-family-of-fibers-of-maps |
See also
- Equality proofs in dependent pair types are characterized in
foundation.equality-dependent-pair-types
. - Equality proofs in dependent function types are characterized in
foundation.equality-dependent-function-types
.
Recent changes
- 2024-02-06. Egbert Rijke and Fredrik Bakke. Refactor files about identity types and homotopies (#1014).
- 2023-12-05. Raymond Baker and Egbert Rijke. Universal property of fibers (#944).
- 2023-11-24. Egbert Rijke. Refactor precomposition (#937).
- 2023-11-09. Egbert Rijke and Fredrik Bakke. Refactoring of retractions, sections, and equivalences, and adding the 6-for-2 property of equivalences (#903).
- 2023-11-05. Fredrik Bakke. Retracts of maps (#900).