The large multiplicative monoid of Dedekind real numbers
Content created by Louis Wasserman.
Created on 2025-11-06.
Last modified on 2025-11-06.
{-# OPTIONS --lossy-unification #-} module real-numbers.large-multiplicative-monoid-of-real-numbers where
Imports
open import foundation.universe-levels open import group-theory.abelian-groups open import group-theory.commutative-monoids open import group-theory.large-abelian-groups open import group-theory.large-commutative-monoids open import group-theory.large-monoids open import group-theory.large-semigroups open import real-numbers.dedekind-real-numbers open import real-numbers.multiplication-real-numbers open import real-numbers.raising-universe-levels-real-numbers open import real-numbers.rational-real-numbers open import real-numbers.similarity-real-numbers
Idea
The Dedekind real numbers form a large commutative monoid under multiplication.
Definition
large-semigroup-mul-ℝ : Large-Semigroup lsuc large-semigroup-mul-ℝ = make-Large-Semigroup ( ℝ-Set) ( mul-ℝ) ( associative-mul-ℝ) large-monoid-mul-ℝ : Large-Monoid lsuc (_⊔_) large-monoid-mul-ℝ = make-Large-Monoid ( large-semigroup-mul-ℝ) ( large-similarity-relation-sim-ℝ) ( raise-ℝ) ( sim-raise-ℝ) ( preserves-sim-mul-ℝ) ( one-ℝ) ( left-unit-law-mul-ℝ) ( right-unit-law-mul-ℝ) large-commutative-monoid-mul-ℝ : Large-Commutative-Monoid lsuc (_⊔_) large-commutative-monoid-mul-ℝ = make-Large-Commutative-Monoid ( large-monoid-mul-ℝ) ( commutative-mul-ℝ)
Properties
The small commutative monoid of real numbers at a universe level
commutative-monoid-mul-ℝ : (l : Level) → Commutative-Monoid (lsuc l) commutative-monoid-mul-ℝ = commutative-monoid-Large-Commutative-Monoid large-commutative-monoid-mul-ℝ
Recent changes
- 2025-11-06. Louis Wasserman. The large ring of real numbers (#1664).