Uniform homeomorphisms between metric spaces
Content created by Louis Wasserman.
Created on 2026-01-09.
Last modified on 2026-01-09.
{-# OPTIONS --lossy-unification #-} module metric-spaces.uniform-homeomorphisms-metric-spaces where
Imports
open import foundation.conjunction open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.existential-quantification open import foundation.function-types open import foundation.propositional-truncations open import foundation.propositions open import foundation.retractions open import foundation.sections open import foundation.subtypes open import foundation.transport-along-identifications open import foundation.universe-levels open import logic.functoriality-existential-quantification open import metric-spaces.action-on-cauchy-sequences-uniformly-continuous-maps-metric-spaces open import metric-spaces.cauchy-sequences-complete-metric-spaces open import metric-spaces.cauchy-sequences-metric-spaces open import metric-spaces.complete-metric-spaces open import metric-spaces.limits-of-cauchy-sequences-metric-spaces open import metric-spaces.maps-metric-spaces open import metric-spaces.metric-spaces open import metric-spaces.uniformly-continuous-maps-metric-spaces
Idea
A
uniform homeomorphism¶
f from a metric space X to a metric space
Y is an equivalence between X and Y that is
uniformly continuous
in each direction.
Definition
module _ {l1 l2 l3 l4 : Level} (X : Metric-Space l1 l2) (Y : Metric-Space l3 l4) (f : map-Metric-Space X Y) where is-uniform-homeo-prop-map-Metric-Space : Prop (l1 ⊔ l2 ⊔ l3 ⊔ l4) is-uniform-homeo-prop-map-Metric-Space = Σ-Prop ( is-equiv-Prop f) ( λ H → ( is-uniformly-continuous-prop-map-Metric-Space X Y f) ∧ ( is-uniformly-continuous-prop-map-Metric-Space ( Y) ( X) ( map-inv-is-equiv H))) is-uniform-homeo-prop-Metric-Space : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) is-uniform-homeo-prop-Metric-Space = type-Prop is-uniform-homeo-prop-map-Metric-Space uniform-homeo-Metric-Space : {l1 l2 l3 l4 : Level} (X : Metric-Space l1 l2) (Y : Metric-Space l3 l4) → UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) uniform-homeo-Metric-Space X Y = type-subtype (is-uniform-homeo-prop-map-Metric-Space X Y) module _ {l1 l2 l3 l4 : Level} (X : Metric-Space l1 l2) (Y : Metric-Space l3 l4) (f : uniform-homeo-Metric-Space X Y) where map-uniform-homeo-Metric-Space : map-Metric-Space X Y map-uniform-homeo-Metric-Space = pr1 f is-equiv-map-uniform-homeo-Metric-Space : is-equiv map-uniform-homeo-Metric-Space is-equiv-map-uniform-homeo-Metric-Space = pr1 (pr2 f) equiv-uniform-homeo-Metric-Space : type-Metric-Space X ≃ type-Metric-Space Y equiv-uniform-homeo-Metric-Space = ( map-uniform-homeo-Metric-Space , is-equiv-map-uniform-homeo-Metric-Space) map-inv-uniform-homeo-Metric-Space : map-Metric-Space Y X map-inv-uniform-homeo-Metric-Space = map-inv-is-equiv is-equiv-map-uniform-homeo-Metric-Space is-section-map-inv-uniform-homeo-Metric-Space : is-section ( map-uniform-homeo-Metric-Space) ( map-inv-uniform-homeo-Metric-Space) is-section-map-inv-uniform-homeo-Metric-Space = is-section-map-inv-equiv ( equiv-uniform-homeo-Metric-Space) is-retraction-map-inv-uniform-homeo-Metric-Space : is-retraction ( map-uniform-homeo-Metric-Space) ( map-inv-uniform-homeo-Metric-Space) is-retraction-map-inv-uniform-homeo-Metric-Space = is-retraction-map-inv-equiv ( equiv-uniform-homeo-Metric-Space) is-uniformly-continuous-map-uniform-homeo-Metric-Space : is-uniformly-continuous-map-Metric-Space ( X) ( Y) ( map-uniform-homeo-Metric-Space) is-uniformly-continuous-map-uniform-homeo-Metric-Space = pr1 (pr2 (pr2 f)) uniformly-continuous-map-uniform-homeo-Metric-Space : uniformly-continuous-map-Metric-Space X Y uniformly-continuous-map-uniform-homeo-Metric-Space = ( map-uniform-homeo-Metric-Space , is-uniformly-continuous-map-uniform-homeo-Metric-Space) is-uniformly-continuous-map-inv-uniform-homeo-Metric-Space : is-uniformly-continuous-map-Metric-Space ( Y) ( X) ( map-inv-uniform-homeo-Metric-Space) is-uniformly-continuous-map-inv-uniform-homeo-Metric-Space = pr2 (pr2 (pr2 f)) uniformly-continuous-map-inv-uniform-homeo-Metric-Space : uniformly-continuous-map-Metric-Space Y X uniformly-continuous-map-inv-uniform-homeo-Metric-Space = ( map-inv-uniform-homeo-Metric-Space , is-uniformly-continuous-map-inv-uniform-homeo-Metric-Space) is-equiv-map-inv-uniform-homeo-Metric-Space : is-equiv map-inv-uniform-homeo-Metric-Space is-equiv-map-inv-uniform-homeo-Metric-Space = is-equiv-map-inv-is-equiv ( is-equiv-map-uniform-homeo-Metric-Space) inv-uniform-homeo-Metric-Space : uniform-homeo-Metric-Space Y X inv-uniform-homeo-Metric-Space = ( map-inv-uniform-homeo-Metric-Space , is-equiv-map-inv-uniform-homeo-Metric-Space , is-uniformly-continuous-map-inv-uniform-homeo-Metric-Space , is-uniformly-continuous-map-uniform-homeo-Metric-Space)
Properties
Given a uniform homeomorphism between X and Y, if X is complete, so is Y
module _ {l1 l2 l3 l4 : Level} (X : Metric-Space l1 l2) (Y : Metric-Space l3 l4) (f : uniform-homeo-Metric-Space X Y) where abstract is-complete-metric-space-uniform-homeo-Metric-Space : is-complete-Metric-Space X → is-complete-Metric-Space Y is-complete-metric-space-uniform-homeo-Metric-Space H = let open do-syntax-trunc-Prop (is-complete-prop-Metric-Space Y) in do (μXY , is-mod-μXY) ← is-uniformly-continuous-map-uniform-homeo-Metric-Space X Y f is-complete-metric-space-cauchy-sequences-have-limits-Metric-Space ( Y) ( λ uY → let uX = map-cauchy-sequence-uniformly-continuous-map-Metric-Space ( Y) ( X) ( uniformly-continuous-map-inv-uniform-homeo-Metric-Space ( X) ( Y) ( f)) ( uY) lim-uX = lim-cauchy-sequence-Complete-Metric-Space (X , H) uX lim-uY = map-uniform-homeo-Metric-Space X Y f lim-uX in ( lim-uY , map-exists ( _) ( λ μ-uX → μ-uX ∘ μXY) ( λ μ-uX is-mod-lim-μ-uX ε n μ-uXμXY≤n → tr ( λ y → neighborhood-Metric-Space Y ε y lim-uY) ( is-section-map-inv-uniform-homeo-Metric-Space ( X) ( Y) ( f) ( sequence-cauchy-sequence-Metric-Space Y uY n)) ( is-mod-μXY ( map-inv-uniform-homeo-Metric-Space ( X) ( Y) ( f) ( sequence-cauchy-sequence-Metric-Space Y uY n)) ( ε) ( lim-uX) ( is-mod-lim-μ-uX ( μXY ε) ( n) ( μ-uXμXY≤n)))) ( is-limit-lim-cauchy-sequence-Complete-Metric-Space ( X , H) ( uX))))
External links
- Uniform isomorphism at Wikidata
Recent changes
- 2026-01-09. Louis Wasserman. The standard Euclidean spaces ℝⁿ (#1756).