Pullbacks

Content created by Fredrik Bakke, Egbert Rijke, Jonathan Prieto-Cubides, Elisabeth Stenholm and Raymond Baker.

Created on 2022-05-18.
Last modified on 2025-01-03.

module foundation-core.pullbacks where
Imports
open import foundation.action-on-identifications-functions
open import foundation.cones-over-cospan-diagrams
open import foundation.dependent-pair-types
open import foundation.functoriality-cartesian-product-types
open import foundation.functoriality-fibers-of-maps
open import foundation.identity-types
open import foundation.morphisms-arrows
open import foundation.standard-pullbacks
open import foundation.type-arithmetic-standard-pullbacks
open import foundation.universe-levels

open import foundation-core.commuting-triangles-of-maps
open import foundation-core.diagonal-maps-cartesian-products-of-types
open import foundation-core.equality-dependent-pair-types
open import foundation-core.equivalences
open import foundation-core.families-of-equivalences
open import foundation-core.fibers-of-maps
open import foundation-core.function-types
open import foundation-core.functoriality-dependent-pair-types
open import foundation-core.homotopies
open import foundation-core.universal-property-pullbacks

Idea

Consider a cone over a cospan diagram of types f : A -> X <- B : g,

  C ------> B
  |         |
  |         | g
  ∨         ∨
  A ------> X.
       f

we want to pose the question of whether this cone is a pullback cone. Although this concept is captured by the universal property of the pullback, that is a large proposition, which is not suitable for all purposes. Therefore, as our main definition of a pullback cone we consider the small predicate of being a pullback: given the existence of the standard pullback type A ×_X B, a cone is a pullback if the gap map into the standard pullback is an equivalence.

Definitions

The small property of being a pullback

module _
  {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4}
  (f : A  X) (g : B  X)
  where

  is-pullback : cone f g C  UU (l1  l2  l3  l4)
  is-pullback c = is-equiv (gap f g c)

A cone is a pullback if and only if it satisfies the universal property

module _
  {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4}
  (f : A  X) (g : B  X)
  where

  abstract
    is-pullback-universal-property-pullback :
      (c : cone f g C)  universal-property-pullback f g c  is-pullback f g c
    is-pullback-universal-property-pullback c =
      is-equiv-up-pullback-up-pullback
        ( cone-standard-pullback f g)
        ( c)
        ( gap f g c)
        ( htpy-cone-up-pullback-standard-pullback f g c)
        ( universal-property-standard-pullback f g)

  abstract
    universal-property-pullback-is-pullback :
      (c : cone f g C)  is-pullback f g c 
      universal-property-pullback f g c
    universal-property-pullback-is-pullback c is-pullback-c =
      up-pullback-up-pullback-is-equiv
        ( cone-standard-pullback f g)
        ( c)
        ( gap f g c)
        ( htpy-cone-up-pullback-standard-pullback f g c)
        ( is-pullback-c)
        ( universal-property-standard-pullback f g)

The gap map into a pullback

The gap map of a commuting square is the map from the domain of the cone into the pullback.

module _
  {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4}
  (f : A  X) (g : B  X) (c : cone f g C) (H : is-pullback f g c)
  where

  gap-is-pullback : {l5 : Level} {C' : UU l5}  cone f g C'  C'  C
  gap-is-pullback =
    map-universal-property-pullback f g c
      ( universal-property-pullback-is-pullback f g c H)

  compute-gap-is-pullback :
    {l5 : Level} {C' : UU l5} (c' : cone f g C') 
    cone-map f g c (gap-is-pullback c')  c'
  compute-gap-is-pullback =
    compute-map-universal-property-pullback f g c
      ( universal-property-pullback-is-pullback f g c H)

The homotopy of cones obtained from the universal property of pullbacks

module _
  {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3}
  (f : A  X) (g : B  X) {C : UU l4}
  (c : cone f g C) (up : is-pullback f g c)
  {l5 : Level} {C' : UU l5} (c' : cone f g C')
  where

  htpy-cone-gap-is-pullback :
    htpy-cone f g
      ( cone-map f g c (gap-is-pullback f g c up c'))
      ( c')
  htpy-cone-gap-is-pullback =
    htpy-eq-cone f g
      ( cone-map f g c (gap-is-pullback f g c up c'))
      ( c')
      ( compute-gap-is-pullback f g c up c')

  htpy-vertical-map-gap-is-pullback :
    vertical-map-cone f g
      ( cone-map f g c (gap-is-pullback f g c up c')) ~
      vertical-map-cone f g c'
  htpy-vertical-map-gap-is-pullback =
    htpy-vertical-map-htpy-cone f g
      ( cone-map f g c (gap-is-pullback f g c up c'))
      ( c')
      ( htpy-cone-gap-is-pullback)

  htpy-horizontal-map-gap-is-pullback :
    horizontal-map-cone f g
      ( cone-map f g c (gap-is-pullback f g c up c')) ~
      horizontal-map-cone f g c'
  htpy-horizontal-map-gap-is-pullback =
    htpy-horizontal-map-htpy-cone f g
      ( cone-map f g c (gap-is-pullback f g c up c'))
      ( c')
      ( htpy-cone-gap-is-pullback)

  coh-htpy-cone-gap-is-pullback :
    coherence-htpy-cone f g
      ( cone-map f g c (gap-is-pullback f g c up c'))
      ( c')
      ( htpy-vertical-map-gap-is-pullback)
      ( htpy-horizontal-map-gap-is-pullback)
  coh-htpy-cone-gap-is-pullback =
    coh-htpy-cone f g
      ( cone-map f g c (gap-is-pullback f g c up c'))
      ( c')
      ( htpy-cone-gap-is-pullback)

Properties

The standard pullbacks are pullbacks

module _
  {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3}
  (f : A  X) (g : B  X)
  where

  is-pullback-standard-pullback : is-pullback f g (cone-standard-pullback f g)
  is-pullback-standard-pullback = is-equiv-id

The identity cone is a pullback

is-pullback-id-cone : {l : Level} (A : UU l)  is-pullback id id (id-cone A)
is-pullback-id-cone A =
  is-equiv-is-invertible pr1  where (x , .x , refl)  refl) refl-htpy

Pullbacks are preserved under homotopies of parallel cones

module _
  {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4}
  {f f' : A  X} (Hf : f ~ f') {g g' : B  X} (Hg : g ~ g')
  where

  triangle-is-pullback-htpy :
    {c : cone f g C} {c' : cone f' g' C} (Hc : htpy-parallel-cone Hf Hg c c') 
    gap f g c ~ map-equiv-standard-pullback-htpy Hf Hg  gap f' g' c'
  triangle-is-pullback-htpy {p , q , H} {p' , q' , H'} (Hp , Hq , HH) z =
    eq-Eq-standard-pullback f g
      ( Hp z)
      ( Hq z)
      ( ( inv (assoc (ap f (Hp z)) (Hf (p' z)  H' z) (inv (Hg (q' z))))) 
        ( inv
          ( right-transpose-eq-concat
            ( H z  ap g (Hq z))
            ( Hg (q' z))
            ( ap f (Hp z)  (Hf (p' z)  H' z))
            ( ( assoc (H z) (ap g (Hq z)) (Hg (q' z))) 
              ( HH z) 
              ( assoc (ap f (Hp z)) (Hf (p' z)) (H' z))))))

  abstract
    is-pullback-htpy :
      {c : cone f g C} (c' : cone f' g' C)
      (Hc : htpy-parallel-cone Hf Hg c c') 
      is-pullback f' g' c'  is-pullback f g c
    is-pullback-htpy {c} c' H pb-c' =
      is-equiv-left-map-triangle
        ( gap f g c)
        ( map-equiv-standard-pullback-htpy Hf Hg)
        ( gap f' g' c')
        ( triangle-is-pullback-htpy H)
        ( pb-c')
        ( is-equiv-map-equiv-standard-pullback-htpy Hf Hg)

  abstract
    is-pullback-htpy' :
      (c : cone f g C) {c' : cone f' g' C}
      (Hc : htpy-parallel-cone Hf Hg c c') 
      is-pullback f g c  is-pullback f' g' c'
    is-pullback-htpy' c {c'} H =
      is-equiv-top-map-triangle
        ( gap f g c)
        ( map-equiv-standard-pullback-htpy Hf Hg)
        ( gap f' g' c')
        ( triangle-is-pullback-htpy H)
        ( is-equiv-map-equiv-standard-pullback-htpy Hf Hg)

Pullbacks are symmetric

The pullback of f : A → X ← B : g is also the pullback of g : B → X ← A : f.

abstract
  is-pullback-swap-cone :
    {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4}
    (f : A  X) (g : B  X) (c : cone f g C) 
    is-pullback f g c  is-pullback g f (swap-cone f g c)
  is-pullback-swap-cone f g c pb-c =
    is-equiv-left-map-triangle
      ( gap g f (swap-cone f g c))
      ( map-commutative-standard-pullback f g)
      ( gap f g c)
      ( triangle-map-commutative-standard-pullback f g c)
      ( pb-c)
      ( is-equiv-map-commutative-standard-pullback f g)

abstract
  is-pullback-swap-cone' :
    {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4}
    (f : A  X) (g : B  X) (c : cone f g C) 
    is-pullback g f (swap-cone f g c)  is-pullback f g c
  is-pullback-swap-cone' f g c =
    is-equiv-top-map-triangle
      ( gap g f (swap-cone f g c))
      ( map-commutative-standard-pullback f g)
      ( gap f g c)
      ( triangle-map-commutative-standard-pullback f g c)
      ( is-equiv-map-commutative-standard-pullback f g)

A cone is a pullback if and only if it induces a family of equivalences between the fibers of the vertical maps

A cone is a pullback if and only if the induced family of maps on fibers between the vertical maps is a family of equivalences

  fiber i a --> fiber g (f a)
      |               |
      |               |
      ∨               ∨
      C ------------> B
      |               |
    i |               | g
      ∨               ∨
  a ∈ A ------------> X.
              f
module _
  {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4}
  (f : A  X) (g : B  X) (c : cone f g C)
  where

  square-tot-map-fiber-vertical-map-cone :
    gap f g c  map-equiv-total-fiber (vertical-map-cone f g c) ~
    tot  _  tot  _  inv))  tot (map-fiber-vertical-map-cone f g c)
  square-tot-map-fiber-vertical-map-cone
    (.(vertical-map-cone f g c x) , x , refl) =
    eq-pair-eq-fiber
      ( eq-pair-eq-fiber
        ( inv (ap inv right-unit  inv-inv (coherence-square-cone f g c x))))

  abstract
    is-fiberwise-equiv-map-fiber-vertical-map-cone-is-pullback :
      is-pullback f g c  is-fiberwise-equiv (map-fiber-vertical-map-cone f g c)
    is-fiberwise-equiv-map-fiber-vertical-map-cone-is-pullback pb =
      is-fiberwise-equiv-is-equiv-tot
        ( is-equiv-top-is-equiv-bottom-square
          ( map-equiv-total-fiber (vertical-map-cone f g c))
          ( tot  _  tot  _  inv)))
          ( tot (map-fiber-vertical-map-cone f g c))
          ( gap f g c)
          ( square-tot-map-fiber-vertical-map-cone)
          ( is-equiv-map-equiv-total-fiber (vertical-map-cone f g c))
          ( is-equiv-tot-is-fiberwise-equiv
            ( λ x 
              is-equiv-tot-is-fiberwise-equiv  y  is-equiv-inv (g y) (f x))))
          ( pb))

  abstract
    is-pullback-is-fiberwise-equiv-map-fiber-vertical-map-cone :
      is-fiberwise-equiv (map-fiber-vertical-map-cone f g c)  is-pullback f g c
    is-pullback-is-fiberwise-equiv-map-fiber-vertical-map-cone is-equiv-fsq =
      is-equiv-bottom-is-equiv-top-square
        ( map-equiv-total-fiber (vertical-map-cone f g c))
        ( tot  _  tot  _  inv)))
        ( tot (map-fiber-vertical-map-cone f g c))
        ( gap f g c)
        ( square-tot-map-fiber-vertical-map-cone)
        ( is-equiv-map-equiv-total-fiber (vertical-map-cone f g c))
        ( is-equiv-tot-is-fiberwise-equiv
          ( λ x 
            is-equiv-tot-is-fiberwise-equiv  y  is-equiv-inv (g y) (f x))))
        ( is-equiv-tot-is-fiberwise-equiv is-equiv-fsq)

A cone is a pullback if and only if it induces a family of equivalences between the fibers of the horizontal maps

A cone is a pullback if and only if the induced family of maps on fibers between the horizontal maps is a family of equivalences

                            j
      fiber j b ----> C --------> B ∋ b
          |           |           |
          |           |           | g
          ∨           ∨           ∨
    fiber f (g b) --> A --------> X.
                            f
module _
  {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4}
  (f : A  X) (g : B  X) (c : cone f g C)
  where

  square-tot-map-fiber-horizontal-map-cone :
    ( gap g f (swap-cone f g c) 
      map-equiv-total-fiber (horizontal-map-cone f g c)) ~
    ( tot  _  tot  _  inv)) 
      tot (map-fiber-horizontal-map-cone f g c))
  square-tot-map-fiber-horizontal-map-cone
    (.(horizontal-map-cone f g c x) , x , refl) =
    eq-pair-eq-fiber
      ( eq-pair-eq-fiber
        ( ap
          ( inv)
          ( inv (right-unit  inv-inv (coherence-square-cone f g c x)))))

  square-tot-map-fiber-horizontal-map-cone' :
    ( ( λ x 
        ( horizontal-map-cone f g c x ,
          vertical-map-cone f g c x ,
          coherence-square-cone f g c x)) 
      map-equiv-total-fiber (horizontal-map-cone f g c)) ~
    tot (map-fiber-horizontal-map-cone f g c)
  square-tot-map-fiber-horizontal-map-cone'
    (.(horizontal-map-cone f g c x) , x , refl) =
    eq-pair-eq-fiber
      ( eq-pair-eq-fiber
        ( inv (right-unit  inv-inv (coherence-square-cone f g c x))))

  abstract
    is-fiberwise-equiv-map-fiber-horizontal-map-cone-is-pullback :
      is-pullback f g c 
      is-fiberwise-equiv (map-fiber-horizontal-map-cone f g c)
    is-fiberwise-equiv-map-fiber-horizontal-map-cone-is-pullback pb =
      is-fiberwise-equiv-map-fiber-vertical-map-cone-is-pullback g f
        ( swap-cone f g c)
        ( is-pullback-swap-cone f g c pb)

  abstract
    is-pullback-is-fiberwise-equiv-map-fiber-horizontal-map-cone :
      is-fiberwise-equiv (map-fiber-horizontal-map-cone f g c) 
      is-pullback f g c
    is-pullback-is-fiberwise-equiv-map-fiber-horizontal-map-cone is-equiv-fsq =
      is-pullback-swap-cone' f g c
        ( is-pullback-is-fiberwise-equiv-map-fiber-vertical-map-cone g f
          ( swap-cone f g c)
          ( is-equiv-fsq))

The horizontal pullback pasting property

Given a diagram as follows where the right-hand square is a pullback

  ∙ -------> ∙ -------> ∙
  |          | ⌟        |
  |          |          |
  ∨          ∨          ∨
  ∙ -------> ∙ -------> ∙,

then the left-hand square is a pullback if and only if the composite square is.

module _
  {l1 l2 l3 l4 l5 l6 : Level}
  {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} {Y : UU l5} {Z : UU l6}
  (i : X  Y) (j : Y  Z) (h : C  Z)
  (c : cone j h B) (d : cone i (vertical-map-cone j h c) A)
  where

  abstract
    is-pullback-rectangle-is-pullback-left-square :
      is-pullback j h c  is-pullback i (vertical-map-cone j h c) d 
      is-pullback (j  i) h (pasting-horizontal-cone i j h c d)
    is-pullback-rectangle-is-pullback-left-square pb-c pb-d =
      is-pullback-is-fiberwise-equiv-map-fiber-vertical-map-cone (j  i) h
        ( pasting-horizontal-cone i j h c d)
        ( λ x 
          is-equiv-left-map-triangle
            ( map-fiber-vertical-map-cone
              ( j  i) h (pasting-horizontal-cone i j h c d) x)
            ( map-fiber-vertical-map-cone j h c (i x))
            ( map-fiber-vertical-map-cone i (vertical-map-cone j h c) d x)
            ( preserves-pasting-horizontal-map-fiber-vertical-map-cone
              ( i)
              ( j)
              ( h)
              ( c)
              ( d)
              ( x))
            ( is-fiberwise-equiv-map-fiber-vertical-map-cone-is-pullback
              ( i)
              ( vertical-map-cone j h c)
              ( d)
              ( pb-d)
              ( x))
            ( is-fiberwise-equiv-map-fiber-vertical-map-cone-is-pullback
              ( j)
              ( h)
              ( c)
              ( pb-c)
              ( i x)))

  abstract
    is-pullback-left-square-is-pullback-rectangle :
      is-pullback j h c 
      is-pullback (j  i) h (pasting-horizontal-cone i j h c d) 
      is-pullback i (vertical-map-cone j h c) d
    is-pullback-left-square-is-pullback-rectangle pb-c pb-rect =
      is-pullback-is-fiberwise-equiv-map-fiber-vertical-map-cone i
        ( vertical-map-cone j h c)
        ( d)
        ( λ x 
          is-equiv-top-map-triangle
            ( map-fiber-vertical-map-cone
              ( j  i) h (pasting-horizontal-cone i j h c d) x)
            ( map-fiber-vertical-map-cone j h c (i x))
            ( map-fiber-vertical-map-cone i (vertical-map-cone j h c) d x)
            ( preserves-pasting-horizontal-map-fiber-vertical-map-cone
              ( i)
              ( j)
              ( h)
              ( c)
              ( d)
              ( x))
            ( is-fiberwise-equiv-map-fiber-vertical-map-cone-is-pullback
              ( j)
              ( h)
              ( c)
              ( pb-c)
              ( i x))
            ( is-fiberwise-equiv-map-fiber-vertical-map-cone-is-pullback
              ( j  i)
              ( h)
              ( pasting-horizontal-cone i j h c d)
              ( pb-rect)
              ( x)))

The vertical pullback pasting property

Given a diagram as follows where the lower square is a pullback

  ∙ -------> ∙
  |          |
  |          |
  ∨          ∨
  ∙ -------> ∙
  | ⌟        |
  |          |
  ∨          ∨
  ∙ -------> ∙,

then the upper square is a pullback if and only if the composite square is.

module _
  {l1 l2 l3 l4 l5 l6 : Level}
  {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} {Y : UU l5} {Z : UU l6}
  (f : C  Z) (g : Y  Z) (h : X  Y)
  (c : cone f g B) (d : cone (horizontal-map-cone f g c) h A)
  where

  abstract
    is-pullback-top-square-is-pullback-rectangle :
      is-pullback f g c 
      is-pullback f (g  h) (pasting-vertical-cone f g h c d) 
      is-pullback (horizontal-map-cone f g c) h d
    is-pullback-top-square-is-pullback-rectangle pb-c pb-dc =
      is-pullback-is-fiberwise-equiv-map-fiber-vertical-map-cone
        ( horizontal-map-cone f g c)
        ( h)
        ( d)
        ( λ x 
          is-fiberwise-equiv-is-equiv-map-Σ
            ( λ t  fiber h (pr1 t))
            ( map-fiber-vertical-map-cone f g c (vertical-map-cone f g c x))
            ( λ t 
              map-fiber-vertical-map-cone
                ( horizontal-map-cone f g c)
                ( h)
                ( d)
                ( pr1 t))
            ( is-fiberwise-equiv-map-fiber-vertical-map-cone-is-pullback
              ( f)
              ( g)
              ( c)
              ( pb-c)
              ( vertical-map-cone f g c x))
            ( is-equiv-top-is-equiv-bottom-square
              ( map-inv-compute-fiber-comp
                ( vertical-map-cone f g c)
                ( vertical-map-cone (horizontal-map-cone f g c) h d)
                ( vertical-map-cone f g c x))
              ( map-inv-compute-fiber-comp g h (f (vertical-map-cone f g c x)))
              ( map-Σ
                ( λ t  fiber h (pr1 t))
                ( map-fiber-vertical-map-cone f g c (vertical-map-cone f g c x))
                ( λ t 
                  map-fiber-vertical-map-cone
                    ( horizontal-map-cone f g c) h d (pr1 t)))
              ( map-fiber-vertical-map-cone f
                ( g  h)
                ( pasting-vertical-cone f g h c d)
                ( vertical-map-cone f g c x))
              ( preserves-pasting-vertical-map-fiber-vertical-map-cone f g h c d
                ( vertical-map-cone f g c x))
              ( is-equiv-map-inv-compute-fiber-comp
                ( vertical-map-cone f g c)
                ( vertical-map-cone (horizontal-map-cone f g c) h d)
                ( vertical-map-cone f g c x))
              ( is-equiv-map-inv-compute-fiber-comp g h
                ( f (vertical-map-cone f g c x)))
              ( is-fiberwise-equiv-map-fiber-vertical-map-cone-is-pullback f
                ( g  h)
                ( pasting-vertical-cone f g h c d)
                ( pb-dc)
                ( vertical-map-cone f g c x)))
            ( x , refl))

  abstract
    is-pullback-rectangle-is-pullback-top-square :
      is-pullback f g c 
      is-pullback (horizontal-map-cone f g c) h d 
      is-pullback f (g  h) (pasting-vertical-cone f g h c d)
    is-pullback-rectangle-is-pullback-top-square pb-c pb-d =
      is-pullback-is-fiberwise-equiv-map-fiber-vertical-map-cone
        ( f)
        ( g  h)
        ( pasting-vertical-cone f g h c d)
        ( λ x 
          is-equiv-bottom-is-equiv-top-square
            ( map-inv-compute-fiber-comp
              ( vertical-map-cone f g c)
              ( vertical-map-cone (horizontal-map-cone f g c) h d)
              ( x))
            ( map-inv-compute-fiber-comp g h (f x))
            ( map-Σ
              ( λ t  fiber h (pr1 t))
              ( map-fiber-vertical-map-cone f g c x)
              ( λ t 
                map-fiber-vertical-map-cone
                  ( horizontal-map-cone f g c)
                  ( h)
                  ( d)
                  ( pr1 t)))
            ( map-fiber-vertical-map-cone
              ( f)
              ( g  h)
              ( pasting-vertical-cone f g h c d)
              ( x))
            ( preserves-pasting-vertical-map-fiber-vertical-map-cone
              ( f)
              ( g)
              ( h)
              ( c)
              ( d)
              ( x))
            ( is-equiv-map-inv-compute-fiber-comp
              ( vertical-map-cone f g c)
              ( vertical-map-cone (horizontal-map-cone f g c) h d)
              ( x))
            ( is-equiv-map-inv-compute-fiber-comp g h (f x))
            ( is-equiv-map-Σ
              ( λ t  fiber h (pr1 t))
              ( is-fiberwise-equiv-map-fiber-vertical-map-cone-is-pullback
                ( f)
                ( g)
                ( c)
                ( pb-c)
                ( x))
              ( λ t 
                is-fiberwise-equiv-map-fiber-vertical-map-cone-is-pullback
                  ( horizontal-map-cone f g c)
                  ( h)
                  ( d)
                  ( pb-d)
                  ( pr1 t))))

Pullbacks are associative

Consider two cospans with a shared vertex B:

      f       g       h       i
  A ----> X <---- B ----> Y <---- C,

and with pullback cones α and β respectively. Moreover, consider a cone γ over the pullbacks as in the following diagram

  ∙ ------------> ∙ ------------> C
  |               | ⌟             |
  |       γ       |       β       | i
  ∨               ∨               ∨
  ∙ ------------> B ------------> Y
  | ⌟             |       h
  |       α       | g
  ∨               ∨
  A ------------> X.
          f

Then the pasting γ □ α is a pullback if and only if γ is if and only if the pasting γ □ β is. And, in particular, we have the equivalence

module _
  {l1 l2 l3 l4 l5 l6 l7 l8 : Level}
  {X : UU l1} {Y : UU l2} {A : UU l3} {B : UU l4} {C : UU l5}
  (f : A  X) (g : B  X) (h : B  Y) (i : C  Y)
  {S : UU l6} {T : UU l7} {U : UU l8}
  (α : cone f g S) (β : cone h i T)
  (γ : cone (horizontal-map-cone f g α) (vertical-map-cone h i β) U)
  (is-pullback-α : is-pullback f g α)
  (is-pullback-β : is-pullback h i β)
  where

  is-pullback-associative :
    is-pullback
      ( f)
      ( g  vertical-map-cone h i β)
      ( pasting-vertical-cone f g (vertical-map-cone h i β) α γ) 
    is-pullback
      ( h  horizontal-map-cone f g α)
      ( i)
      ( pasting-horizontal-cone (horizontal-map-cone f g α) h i β γ)
  is-pullback-associative H =
    is-pullback-rectangle-is-pullback-left-square
      ( horizontal-map-cone f g α)
      ( h)
      ( i)
      ( β)
      ( γ)
      ( is-pullback-β)
      ( is-pullback-top-square-is-pullback-rectangle
        ( f)
        ( g)
        ( vertical-map-cone h i β)
        ( α)
        ( γ)
        ( is-pullback-α)
        ( H))

  is-pullback-inv-associative :
    is-pullback
      ( h  horizontal-map-cone f g α)
      ( i)
      ( pasting-horizontal-cone (horizontal-map-cone f g α) h i β γ) 
    is-pullback
      ( f)
      ( g  vertical-map-cone h i β)
      ( pasting-vertical-cone f g (vertical-map-cone h i β) α γ)
  is-pullback-inv-associative H =
    is-pullback-rectangle-is-pullback-top-square
        ( f)
        ( g)
        ( vertical-map-cone h i β)
        ( α)
        ( γ)
        ( is-pullback-α)
        ( is-pullback-left-square-is-pullback-rectangle
          ( horizontal-map-cone f g α)
          ( h)
          ( i)
          ( β)
          ( γ)
          ( is-pullback-β)
          ( H))

Pullbacks can be “folded”

Given a pullback square

         f'
    C -------> B
    | ⌟        |
  g'|          | g
    ∨          ∨
    A -------> X
         f

we can “fold” the vertical edge onto the horizontal one and get a new pullback square

            C ---------> X
            | ⌟          |
  (f' , g') |            |
            ∨            ∨
          A × B -----> X × X,
                f × g

moreover, this folded square is a pullback if and only if the original one is.

module _
  {l1 l2 l3 : Level}
  {A : UU l1} {B : UU l2} {X : UU l3}
  (f : A  X) (g : B  X)
  where

  abstract
    is-pullback-fold-cone-is-pullback :
      {l4 : Level} {C : UU l4} (c : cone f g C) 
      is-pullback f g c 
      is-pullback (map-product f g) (diagonal-product X) (fold-cone f g c)
    is-pullback-fold-cone-is-pullback c pb-c =
      is-equiv-left-map-triangle
        ( gap (map-product f g) (diagonal-product X) (fold-cone f g c))
        ( map-fold-cone-standard-pullback f g)
        ( gap f g c)
        ( triangle-map-fold-cone-standard-pullback f g c)
        ( pb-c)
        ( is-equiv-map-fold-cone-standard-pullback f g)

  abstract
    is-pullback-is-pullback-fold-cone :
      {l4 : Level} {C : UU l4} (c : cone f g C) 
      is-pullback (map-product f g) (diagonal-product X) (fold-cone f g c) 
      is-pullback f g c
    is-pullback-is-pullback-fold-cone c =
      is-equiv-top-map-triangle
        ( gap (map-product f g) (diagonal-product X) (fold-cone f g c))
        ( map-fold-cone-standard-pullback f g)
        ( gap f g c)
        ( triangle-map-fold-cone-standard-pullback f g c)
        ( is-equiv-map-fold-cone-standard-pullback f g)

Table of files about pullbacks

The following table lists files that are about pullbacks as a general concept.

ConceptFile
Cospan diagramsfoundation.cospans
Morphisms of cospan diagramsfoundation.morphisms-cospans
Cones over cospan diagramsfoundation.cones-over-cospan-diagrams
The universal property of pullbacks (foundation-core)foundation-core.universal-property-pullbacks
The universal property of pullbacks (foundation)foundation.universal-property-pullbacks
The universal property of fiber productsfoundation.universal-property-fiber-products
Standard pullbacksfoundation.standard-pullbacks
Pullbacks (foundation-core)foundation-core.pullbacks
Pullbacks (foundation)foundation.pullbacks
Pullback conesfoundation.pullback-cones
Functoriality of pullbacksfoundation.functoriality-pullbacks
Cartesian morphisms of arrowsfoundation.cartesian-morphisms-arrows
Dependent products of pullbacksfoundation.dependent-products-pullbacks
Dependent sums of pullbacksfoundation.dependent-sums-pullbacks
Products of pullbacksfoundation.products-pullbacks
Coroducts of pullbacksfoundation.coproducts-pullbacks
Postcomposition of pullbacksfoundation.postcomposition-pullbacks
Pullbacks of subtypesfoundation.pullbacks-subtypes
The pullback-homorthogonal-factorization-systems.pullback-hom
Functoriality of the pullback-homorthogonal-factorization-systems.functoriality-pullback-hom
Pullbacks in precategoriescategory-theory.pullbacks-in-precategories

Recent changes