Similarity of complex numbers
Content created by Louis Wasserman.
Created on 2025-10-11.
Last modified on 2025-10-11.
module complex-numbers.similarity-complex-numbers where
Imports
open import complex-numbers.complex-numbers open import foundation.conjunction open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.propositions open import foundation.universe-levels open import real-numbers.similarity-real-numbers
Idea
Two complex numbers are similar¶ if their real and imaginary parts are similar.
Definition
sim-prop-ℂ : {l1 l2 : Level} → ℂ l1 → ℂ l2 → Prop (l1 ⊔ l2) sim-prop-ℂ (a , b) (c , d) = sim-prop-ℝ a c ∧ sim-prop-ℝ b d sim-ℂ : {l1 l2 : Level} → ℂ l1 → ℂ l2 → UU (l1 ⊔ l2) sim-ℂ a+bi c+di = type-Prop (sim-prop-ℂ a+bi c+di)
Properties
Similarity is reflexive
abstract refl-sim-ℂ : {l : Level} (z : ℂ l) → sim-ℂ z z refl-sim-ℂ (a , b) = (refl-sim-ℝ a , refl-sim-ℝ b)
Similarity is symmetric
abstract symmetric-sim-ℂ : {l1 l2 : Level} {x : ℂ l1} {y : ℂ l2} → sim-ℂ x y → sim-ℂ y x symmetric-sim-ℂ (a~c , b~d) = (symmetric-sim-ℝ a~c , symmetric-sim-ℝ b~d)
Similarity is transitive
abstract transitive-sim-ℂ : {l1 l2 l3 : Level} (x : ℂ l1) (y : ℂ l2) (z : ℂ l3) → sim-ℂ y z → sim-ℂ x y → sim-ℂ x z transitive-sim-ℂ (a , b) (c , d) (e , f) (c~e , d~f) (a~c , b~d) = ( transitive-sim-ℝ a c e c~e a~c , transitive-sim-ℝ b d f d~f b~d)
Similarity characterizes equality at a universe level
abstract eq-sim-ℂ : {l : Level} {x y : ℂ l} → sim-ℂ x y → x = y eq-sim-ℂ (a~c , b~d) = eq-ℂ (eq-sim-ℝ a~c) (eq-sim-ℝ b~d)
Recent changes
- 2025-10-11. Louis Wasserman. Complex numbers (#1573).