The density of rational numbers in proper closed intervals of real numbers
Content created by Louis Wasserman.
Created on 2026-01-11.
Last modified on 2026-01-11.
{-# OPTIONS --lossy-unification #-} module real-numbers.density-rationals-proper-closed-intervals-real-numbers where
Imports
open import elementary-number-theory.minimum-positive-rational-numbers open import elementary-number-theory.rational-numbers open import foundation.conjunction open import foundation.dependent-pair-types open import foundation.disjunction open import foundation.existential-quantification open import foundation.function-types open import foundation.propositional-truncations open import foundation.subtypes open import foundation.universe-levels open import metric-spaces.dense-subsets-metric-spaces open import real-numbers.addition-real-numbers open import real-numbers.closed-intervals-real-numbers open import real-numbers.dedekind-real-numbers open import real-numbers.dense-subsets-real-numbers open import real-numbers.difference-real-numbers open import real-numbers.inequalities-addition-and-subtraction-real-numbers open import real-numbers.inequality-real-numbers open import real-numbers.metric-space-of-real-numbers open import real-numbers.proper-closed-intervals-real-numbers open import real-numbers.rational-approximates-of-real-numbers open import real-numbers.rational-real-numbers open import real-numbers.strict-inequalities-addition-and-subtraction-real-numbers open import real-numbers.strict-inequality-real-numbers
Idea
The rational real numbers are dense in any proper closed interval.
Proof
abstract is-dense-subset-rational-proper-closed-interval-ℝ : {l1 l2 : Level} (l3 : Level) ([a,b] : proper-closed-interval-ℝ l1 l2) → is-dense-subset-Metric-Space ( metric-space-proper-closed-interval-ℝ l3 [a,b]) ( subtype-rational-ℝ ∘ pr1) is-dense-subset-rational-proper-closed-interval-ℝ l = is-dense-subset-proper-closed-interval-ℝ (dense-subset-rational-ℝ l)
Recent changes
- 2026-01-11. Louis Wasserman. The unit interval in the real numbers is totally bounded (#1769).