Surjective maps
Content created by Fredrik Bakke, Egbert Rijke, Jonathan Prieto-Cubides, Victor Blanchi, Elisabeth Stenholm, Gregor Perčič, Daniel Gratzer, Elif Uskuplu, Håkon Gylterud and Raymond Baker.
Created on 2022-02-09.
Last modified on 2025-01-07.
module foundation.surjective-maps where
Imports
open import foundation.action-on-identifications-functions open import foundation.connected-maps open import foundation.contractible-types open import foundation.dependent-pair-types open import foundation.diagonal-maps-of-types open import foundation.embeddings open import foundation.equality-cartesian-product-types open import foundation.functoriality-cartesian-product-types open import foundation.fundamental-theorem-of-identity-types open import foundation.homotopy-induction open import foundation.identity-types open import foundation.inhabited-types open import foundation.postcomposition-dependent-functions open import foundation.propositional-truncations open import foundation.split-surjective-maps open import foundation.structure-identity-principle open import foundation.subtype-identity-principle open import foundation.truncated-types open import foundation.univalence open import foundation.universal-property-family-of-fibers-of-maps open import foundation.universal-property-propositional-truncation open import foundation.universe-levels open import foundation-core.cartesian-product-types open import foundation-core.constant-maps open import foundation-core.contractible-maps open import foundation-core.equivalences open import foundation-core.fibers-of-maps open import foundation-core.function-types open import foundation-core.functoriality-dependent-function-types open import foundation-core.homotopies open import foundation-core.precomposition-dependent-functions open import foundation-core.propositional-maps open import foundation-core.propositions open import foundation-core.sections open import foundation-core.sets open import foundation-core.subtypes open import foundation-core.torsorial-type-families open import foundation-core.truncated-maps open import foundation-core.truncation-levels open import orthogonal-factorization-systems.extensions-of-maps
Idea
A map f : A → B
is surjective if all of its
fibers are
inhabited.
Definition
Surjective maps
is-surjective-Prop : {l1 l2 : Level} {A : UU l1} {B : UU l2} → (A → B) → Prop (l1 ⊔ l2) is-surjective-Prop {B = B} f = Π-Prop B (trunc-Prop ∘ fiber f) is-surjective : {l1 l2 : Level} {A : UU l1} {B : UU l2} → (A → B) → UU (l1 ⊔ l2) is-surjective f = type-Prop (is-surjective-Prop f) is-prop-is-surjective : {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) → is-prop (is-surjective f) is-prop-is-surjective f = is-prop-type-Prop (is-surjective-Prop f) infix 5 _↠_ _↠_ : {l1 l2 : Level} → UU l1 → UU l2 → UU (l1 ⊔ l2) A ↠ B = Σ (A → B) is-surjective module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A ↠ B) where map-surjection : A → B map-surjection = pr1 f is-surjective-map-surjection : is-surjective map-surjection is-surjective-map-surjection = pr2 f
The type of all surjective maps out of a type
Surjection : {l1 : Level} (l2 : Level) → UU l1 → UU (l1 ⊔ lsuc l2) Surjection l2 A = Σ (UU l2) (A ↠_) module _ {l1 l2 : Level} {A : UU l1} (f : Surjection l2 A) where type-Surjection : UU l2 type-Surjection = pr1 f surjection-Surjection : A ↠ type-Surjection surjection-Surjection = pr2 f map-Surjection : A → type-Surjection map-Surjection = map-surjection surjection-Surjection is-surjective-map-Surjection : is-surjective map-Surjection is-surjective-map-Surjection = is-surjective-map-surjection surjection-Surjection
The type of all surjective maps into k
-truncated types
Surjection-Into-Truncated-Type : {l1 : Level} (l2 : Level) (k : 𝕋) → UU l1 → UU (l1 ⊔ lsuc l2) Surjection-Into-Truncated-Type l2 k A = Σ (Truncated-Type l2 k) (λ X → A ↠ type-Truncated-Type X) emb-inclusion-Surjection-Into-Truncated-Type : {l1 : Level} (l2 : Level) (k : 𝕋) (A : UU l1) → Surjection-Into-Truncated-Type l2 k A ↪ Surjection l2 A emb-inclusion-Surjection-Into-Truncated-Type l2 k A = emb-Σ (λ X → A ↠ X) (emb-type-Truncated-Type l2 k) (λ X → id-emb) inclusion-Surjection-Into-Truncated-Type : {l1 l2 : Level} {k : 𝕋} {A : UU l1} → Surjection-Into-Truncated-Type l2 k A → Surjection l2 A inclusion-Surjection-Into-Truncated-Type {l1} {l2} {k} {A} = map-emb (emb-inclusion-Surjection-Into-Truncated-Type l2 k A) module _ {l1 l2 : Level} {k : 𝕋} {A : UU l1} (f : Surjection-Into-Truncated-Type l2 k A) where truncated-type-Surjection-Into-Truncated-Type : Truncated-Type l2 k truncated-type-Surjection-Into-Truncated-Type = pr1 f type-Surjection-Into-Truncated-Type : UU l2 type-Surjection-Into-Truncated-Type = type-Truncated-Type truncated-type-Surjection-Into-Truncated-Type is-trunc-type-Surjection-Into-Truncated-Type : is-trunc k type-Surjection-Into-Truncated-Type is-trunc-type-Surjection-Into-Truncated-Type = is-trunc-type-Truncated-Type truncated-type-Surjection-Into-Truncated-Type surjection-Surjection-Into-Truncated-Type : A ↠ type-Surjection-Into-Truncated-Type surjection-Surjection-Into-Truncated-Type = pr2 f map-Surjection-Into-Truncated-Type : A → type-Surjection-Into-Truncated-Type map-Surjection-Into-Truncated-Type = map-surjection surjection-Surjection-Into-Truncated-Type is-surjective-Surjection-Into-Truncated-Type : is-surjective map-Surjection-Into-Truncated-Type is-surjective-Surjection-Into-Truncated-Type = is-surjective-map-surjection surjection-Surjection-Into-Truncated-Type
The type of all surjective maps into sets
Surjection-Into-Set : {l1 : Level} (l2 : Level) → UU l1 → UU (l1 ⊔ lsuc l2) Surjection-Into-Set l2 A = Surjection-Into-Truncated-Type l2 zero-𝕋 A emb-inclusion-Surjection-Into-Set : {l1 : Level} (l2 : Level) (A : UU l1) → Surjection-Into-Set l2 A ↪ Surjection l2 A emb-inclusion-Surjection-Into-Set l2 A = emb-inclusion-Surjection-Into-Truncated-Type l2 zero-𝕋 A inclusion-Surjection-Into-Set : {l1 l2 : Level} {A : UU l1} → Surjection-Into-Set l2 A → Surjection l2 A inclusion-Surjection-Into-Set {l1} {l2} {A} = inclusion-Surjection-Into-Truncated-Type module _ {l1 l2 : Level} {A : UU l1} (f : Surjection-Into-Set l2 A) where set-Surjection-Into-Set : Set l2 set-Surjection-Into-Set = truncated-type-Surjection-Into-Truncated-Type f type-Surjection-Into-Set : UU l2 type-Surjection-Into-Set = type-Surjection-Into-Truncated-Type f is-set-type-Surjection-Into-Set : is-set type-Surjection-Into-Set is-set-type-Surjection-Into-Set = is-trunc-type-Surjection-Into-Truncated-Type f surjection-Surjection-Into-Set : A ↠ type-Surjection-Into-Set surjection-Surjection-Into-Set = surjection-Surjection-Into-Truncated-Type f map-Surjection-Into-Set : A → type-Surjection-Into-Set map-Surjection-Into-Set = map-Surjection-Into-Truncated-Type f is-surjective-Surjection-Into-Set : is-surjective map-Surjection-Into-Set is-surjective-Surjection-Into-Set = is-surjective-Surjection-Into-Truncated-Type f
Properties
Any map that has a section is surjective
abstract is-surjective-has-section : {l1 l2 : Level} {A : UU l1} {B : UU l2} {f : A → B} → section f → is-surjective f is-surjective-has-section (g , G) b = unit-trunc-Prop (g b , G b)
Any split surjective map is surjective
abstract is-surjective-is-split-surjective : {l1 l2 : Level} {A : UU l1} {B : UU l2} {f : A → B} → is-split-surjective f → is-surjective f is-surjective-is-split-surjective H x = unit-trunc-Prop (H x)
Any equivalence is surjective
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} where is-surjective-is-equiv : {f : A → B} → is-equiv f → is-surjective f is-surjective-is-equiv H = is-surjective-has-section (pr1 H) is-surjective-map-equiv : (e : A ≃ B) → is-surjective (map-equiv e) is-surjective-map-equiv e = is-surjective-is-equiv (is-equiv-map-equiv e) surjection-equiv : A ≃ B → A ↠ B surjection-equiv e = map-equiv e , is-surjective-map-equiv e surjection-inv-equiv : B ≃ A → A ↠ B surjection-inv-equiv e = surjection-equiv (inv-equiv e)
The identity function is surjective
module _ {l : Level} {A : UU l} where is-surjective-id : is-surjective (id {A = A}) is-surjective-id a = unit-trunc-Prop (a , refl)
Maps which are homotopic to surjective maps are surjective
module _ { l1 l2 : Level} {A : UU l1} {B : UU l2} where abstract is-surjective-htpy : {f g : A → B} → f ~ g → is-surjective g → is-surjective f is-surjective-htpy {f} {g} H K b = apply-universal-property-trunc-Prop ( K b) ( trunc-Prop (fiber f b)) ( λ where (a , refl) → unit-trunc-Prop (a , H a)) abstract is-surjective-htpy' : {f g : A → B} → f ~ g → is-surjective f → is-surjective g is-surjective-htpy' H = is-surjective-htpy (inv-htpy H)
The dependent universal property of surjective maps
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) where dependent-universal-property-surjection : UUω dependent-universal-property-surjection = {l : Level} (P : B → Prop l) → is-equiv (λ (h : (b : B) → type-Prop (P b)) x → h (f x)) abstract is-surjective-dependent-universal-property-surjection : dependent-universal-property-surjection → is-surjective f is-surjective-dependent-universal-property-surjection dup-surj-f = map-inv-is-equiv ( dup-surj-f (λ b → trunc-Prop (fiber f b))) ( λ x → unit-trunc-Prop (x , refl)) abstract square-dependent-universal-property-surjection : {l3 : Level} (P : B → Prop l3) → ( λ (h : (y : B) → type-Prop (P y)) x → h (f x)) ~ ( ( λ h x → h (f x) (x , refl)) ∘ ( λ h y → h y ∘ unit-trunc-Prop) ∘ ( postcomp-Π _ ( λ {y} → diagonal-exponential ( type-Prop (P y)) ( type-trunc-Prop (fiber f y))))) square-dependent-universal-property-surjection P = refl-htpy abstract dependent-universal-property-surjection-is-surjective : is-surjective f → dependent-universal-property-surjection dependent-universal-property-surjection-is-surjective is-surj-f P = is-equiv-comp ( λ h x → h (f x) (x , refl)) ( ( λ h y → h y ∘ unit-trunc-Prop) ∘ ( postcomp-Π ( B) ( λ {y} → diagonal-exponential ( type-Prop (P y)) ( type-trunc-Prop (fiber f y))))) ( is-equiv-comp ( λ h y → h y ∘ unit-trunc-Prop) ( postcomp-Π ( B) ( λ {y} → diagonal-exponential ( type-Prop (P y)) ( type-trunc-Prop (fiber f y)))) ( is-equiv-map-Π-is-fiberwise-equiv ( λ y → is-equiv-diagonal-exponential-is-contr ( is-proof-irrelevant-is-prop ( is-prop-type-trunc-Prop) ( is-surj-f y)) ( type-Prop (P y)))) ( is-equiv-map-Π-is-fiberwise-equiv ( λ b → is-propositional-truncation-trunc-Prop (fiber f b) (P b)))) ( universal-property-family-of-fibers-fiber f (is-in-subtype P)) equiv-dependent-universal-property-surjection-is-surjective : is-surjective f → {l : Level} (C : B → Prop l) → ((b : B) → type-Prop (C b)) ≃ ((a : A) → type-Prop (C (f a))) pr1 (equiv-dependent-universal-property-surjection-is-surjective H C) h x = h (f x) pr2 (equiv-dependent-universal-property-surjection-is-surjective H C) = dependent-universal-property-surjection-is-surjective H C apply-dependent-universal-property-surjection-is-surjective : is-surjective f → {l : Level} (C : B → Prop l) → ((a : A) → type-Prop (C (f a))) → ((y : B) → type-Prop (C y)) apply-dependent-universal-property-surjection-is-surjective H C = map-inv-equiv ( equiv-dependent-universal-property-surjection-is-surjective H C) apply-twice-dependent-universal-property-surjection-is-surjective : is-surjective f → {l : Level} (C : B → B → Prop l) → ((x y : A) → type-Prop (C (f x) (f y))) → ((s t : B) → type-Prop (C s t)) apply-twice-dependent-universal-property-surjection-is-surjective H C G s = apply-dependent-universal-property-surjection-is-surjective ( H) ( λ b → C s b) ( λ y → apply-dependent-universal-property-surjection-is-surjective ( H) ( λ b → C b (f y)) ( λ x → G x y) ( s)) equiv-dependent-universal-property-surjection : {l l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A ↠ B) → (C : B → Prop l) → ((b : B) → type-Prop (C b)) ≃ ((a : A) → type-Prop (C (map-surjection f a))) equiv-dependent-universal-property-surjection f = equiv-dependent-universal-property-surjection-is-surjective ( map-surjection f) ( is-surjective-map-surjection f) apply-dependent-universal-property-surjection : {l l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A ↠ B) → (C : B → Prop l) → ((a : A) → type-Prop (C (map-surjection f a))) → ((y : B) → type-Prop (C y)) apply-dependent-universal-property-surjection f = apply-dependent-universal-property-surjection-is-surjective ( map-surjection f) ( is-surjective-map-surjection f)
A map into a proposition is a propositional truncation if and only if it is surjective
abstract is-surjective-is-propositional-truncation : {l1 l2 : Level} {A : UU l1} {P : Prop l2} (f : A → type-Prop P) → dependent-universal-property-propositional-truncation P f → is-surjective f is-surjective-is-propositional-truncation f duppt-f = is-surjective-dependent-universal-property-surjection f duppt-f abstract is-propsitional-truncation-is-surjective : {l1 l2 : Level} {A : UU l1} {P : Prop l2} (f : A → type-Prop P) → is-surjective f → dependent-universal-property-propositional-truncation P f is-propsitional-truncation-is-surjective f is-surj-f = dependent-universal-property-surjection-is-surjective f is-surj-f
A map that is both surjective and an embedding is an equivalence
abstract is-equiv-is-emb-is-surjective : {l1 l2 : Level} {A : UU l1} {B : UU l2} {f : A → B} → is-surjective f → is-emb f → is-equiv f is-equiv-is-emb-is-surjective {f = f} H K = is-equiv-is-contr-map ( λ y → is-proof-irrelevant-is-prop ( is-prop-map-is-emb K y) ( apply-universal-property-trunc-Prop ( H y) ( fiber-emb-Prop (f , K) y) ( id)))
The composite of surjective maps is surjective
module _ {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} where abstract is-surjective-left-map-triangle : (f : A → X) (g : B → X) (h : A → B) (H : f ~ g ∘ h) → is-surjective g → is-surjective h → is-surjective f is-surjective-left-map-triangle f g h H is-surj-g is-surj-h x = apply-universal-property-trunc-Prop ( is-surj-g x) ( trunc-Prop (fiber f x)) ( λ where ( b , refl) → apply-universal-property-trunc-Prop ( is-surj-h b) ( trunc-Prop (fiber f (g b))) ( λ where (a , refl) → unit-trunc-Prop (a , H a))) is-surjective-comp : {g : B → X} {h : A → B} → is-surjective g → is-surjective h → is-surjective (g ∘ h) is-surjective-comp {g} {h} = is-surjective-left-map-triangle (g ∘ h) g h refl-htpy comp-surjection : B ↠ X → A ↠ B → A ↠ X comp-surjection (g , G) (h , H) = g ∘ h , is-surjective-comp G H
Functoriality of products preserves being surjective
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} where is-surjective-map-product : {f : A → C} {g : B → D} → is-surjective f → is-surjective g → is-surjective (map-product f g) is-surjective-map-product {f} {g} s s' (c , d) = apply-twice-universal-property-trunc-Prop ( s c) ( s' d) ( trunc-Prop (fiber (map-product f g) (c , d))) ( λ x y → unit-trunc-Prop ((pr1 x , pr1 y) , eq-pair (pr2 x) (pr2 y))) surjection-product : (A ↠ C) → (B ↠ D) → ((A × B) ↠ (C × D)) pr1 (surjection-product f g) = map-product (map-surjection f) (map-surjection g) pr2 (surjection-product f g) = is-surjective-map-product ( is-surjective-map-surjection f) ( is-surjective-map-surjection g)
The composite of a surjective map before an equivalence is surjective
is-surjective-left-comp-equiv : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : UU l3} (e : B ≃ C) {f : A → B} → is-surjective f → is-surjective (map-equiv e ∘ f) is-surjective-left-comp-equiv e = is-surjective-comp (is-surjective-map-equiv e)
The composite of a surjective map after an equivalence is surjective
is-surjective-right-comp-equiv : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {f : B → C} → is-surjective f → (e : A ≃ B) → is-surjective (f ∘ map-equiv e) is-surjective-right-comp-equiv H e = is-surjective-comp H (is-surjective-map-equiv e)
If a composite is surjective, then so is its left factor
module _ {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} where abstract is-surjective-right-map-triangle : (f : A → X) (g : B → X) (h : A → B) (H : f ~ (g ∘ h)) → is-surjective f → is-surjective g is-surjective-right-map-triangle f g h H is-surj-f x = apply-universal-property-trunc-Prop ( is-surj-f x) ( trunc-Prop (fiber g x)) ( λ where (a , refl) → unit-trunc-Prop (h a , inv (H a))) is-surjective-left-factor : {g : B → X} (h : A → B) → is-surjective (g ∘ h) → is-surjective g is-surjective-left-factor {g} h = is-surjective-right-map-triangle (g ∘ h) g h refl-htpy
Surjective maps are -1
-connected
is-neg-one-connected-map-is-surjective : {l1 l2 : Level} {A : UU l1} {B : UU l2} {f : A → B} → is-surjective f → is-connected-map neg-one-𝕋 f is-neg-one-connected-map-is-surjective H b = is-proof-irrelevant-is-prop is-prop-type-trunc-Prop (H b) is-surjective-is-neg-one-connected-map : {l1 l2 : Level} {A : UU l1} {B : UU l2} {f : A → B} → is-connected-map neg-one-𝕋 f → is-surjective f is-surjective-is-neg-one-connected-map H b = center (H b)
A (k+1)-connected map is surjective
is-surjective-is-connected-map : {l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} {f : A → B} → is-connected-map (succ-𝕋 k) f → is-surjective f is-surjective-is-connected-map neg-two-𝕋 H = is-surjective-is-neg-one-connected-map H is-surjective-is-connected-map (succ-𝕋 k) H = is-surjective-is-connected-map ( k) ( is-connected-map-is-connected-map-succ-𝕋 ( succ-𝕋 k) ( H))
Precomposing functions into a family of k+1
-types by a surjective map is a k
-truncated map
is-trunc-map-precomp-Π-is-surjective : {l1 l2 l3 : Level} (k : 𝕋) → {A : UU l1} {B : UU l2} {f : A → B} → is-surjective f → (P : B → Truncated-Type l3 (succ-𝕋 k)) → is-trunc-map k (precomp-Π f (λ b → type-Truncated-Type (P b))) is-trunc-map-precomp-Π-is-surjective k H = is-trunc-map-precomp-Π-is-connected-map ( neg-one-𝕋) ( succ-𝕋 k) ( k) ( refl) ( is-neg-one-connected-map-is-surjective H)
Characterization of the identity type of A ↠ B
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A ↠ B) where htpy-surjection : (A ↠ B) → UU (l1 ⊔ l2) htpy-surjection g = map-surjection f ~ map-surjection g refl-htpy-surjection : htpy-surjection f refl-htpy-surjection = refl-htpy is-torsorial-htpy-surjection : is-torsorial htpy-surjection is-torsorial-htpy-surjection = is-torsorial-Eq-subtype ( is-torsorial-htpy (map-surjection f)) ( is-prop-is-surjective) ( map-surjection f) ( refl-htpy) ( is-surjective-map-surjection f) htpy-eq-surjection : (g : A ↠ B) → (f = g) → htpy-surjection g htpy-eq-surjection .f refl = refl-htpy-surjection is-equiv-htpy-eq-surjection : (g : A ↠ B) → is-equiv (htpy-eq-surjection g) is-equiv-htpy-eq-surjection = fundamental-theorem-id is-torsorial-htpy-surjection htpy-eq-surjection extensionality-surjection : (g : A ↠ B) → (f = g) ≃ htpy-surjection g pr1 (extensionality-surjection g) = htpy-eq-surjection g pr2 (extensionality-surjection g) = is-equiv-htpy-eq-surjection g eq-htpy-surjection : (g : A ↠ B) → htpy-surjection g → f = g eq-htpy-surjection g = map-inv-equiv (extensionality-surjection g)
Characterization of the identity type of Surjection l2 A
equiv-Surjection : {l1 l2 l3 : Level} {A : UU l1} → Surjection l2 A → Surjection l3 A → UU (l1 ⊔ l2 ⊔ l3) equiv-Surjection f g = Σ ( type-Surjection f ≃ type-Surjection g) ( λ e → (map-equiv e ∘ map-Surjection f) ~ map-Surjection g) module _ {l1 l2 : Level} {A : UU l1} (f : Surjection l2 A) where id-equiv-Surjection : equiv-Surjection f f pr1 id-equiv-Surjection = id-equiv pr2 id-equiv-Surjection = refl-htpy is-torsorial-equiv-Surjection : is-torsorial (equiv-Surjection f) is-torsorial-equiv-Surjection = is-torsorial-Eq-structure ( is-torsorial-equiv (type-Surjection f)) ( type-Surjection f , id-equiv) ( is-torsorial-htpy-surjection (surjection-Surjection f)) equiv-eq-Surjection : (g : Surjection l2 A) → (f = g) → equiv-Surjection f g equiv-eq-Surjection .f refl = id-equiv-Surjection is-equiv-equiv-eq-Surjection : (g : Surjection l2 A) → is-equiv (equiv-eq-Surjection g) is-equiv-equiv-eq-Surjection = fundamental-theorem-id is-torsorial-equiv-Surjection equiv-eq-Surjection extensionality-Surjection : (g : Surjection l2 A) → (f = g) ≃ equiv-Surjection f g pr1 (extensionality-Surjection g) = equiv-eq-Surjection g pr2 (extensionality-Surjection g) = is-equiv-equiv-eq-Surjection g eq-equiv-Surjection : (g : Surjection l2 A) → equiv-Surjection f g → f = g eq-equiv-Surjection g = map-inv-equiv (extensionality-Surjection g)
Characterization of the identity type of Surjection-Into-Truncated-Type l2 k A
equiv-Surjection-Into-Truncated-Type : {l1 l2 l3 : Level} {k : 𝕋} {A : UU l1} → Surjection-Into-Truncated-Type l2 k A → Surjection-Into-Truncated-Type l3 k A → UU (l1 ⊔ l2 ⊔ l3) equiv-Surjection-Into-Truncated-Type f g = equiv-Surjection ( inclusion-Surjection-Into-Truncated-Type f) ( inclusion-Surjection-Into-Truncated-Type g) module _ {l1 l2 : Level} {k : 𝕋} {A : UU l1} (f : Surjection-Into-Truncated-Type l2 k A) where id-equiv-Surjection-Into-Truncated-Type : equiv-Surjection-Into-Truncated-Type f f id-equiv-Surjection-Into-Truncated-Type = id-equiv-Surjection (inclusion-Surjection-Into-Truncated-Type f) extensionality-Surjection-Into-Truncated-Type : (g : Surjection-Into-Truncated-Type l2 k A) → (f = g) ≃ equiv-Surjection-Into-Truncated-Type f g extensionality-Surjection-Into-Truncated-Type g = ( extensionality-Surjection ( inclusion-Surjection-Into-Truncated-Type f) ( inclusion-Surjection-Into-Truncated-Type g)) ∘e ( equiv-ap-emb (emb-inclusion-Surjection-Into-Truncated-Type l2 k A)) equiv-eq-Surjection-Into-Truncated-Type : (g : Surjection-Into-Truncated-Type l2 k A) → (f = g) → equiv-Surjection-Into-Truncated-Type f g equiv-eq-Surjection-Into-Truncated-Type g = map-equiv (extensionality-Surjection-Into-Truncated-Type g) refl-equiv-eq-Surjection-Into-Truncated-Type : equiv-eq-Surjection-Into-Truncated-Type f refl = id-equiv-Surjection-Into-Truncated-Type refl-equiv-eq-Surjection-Into-Truncated-Type = refl eq-equiv-Surjection-Into-Truncated-Type : (g : Surjection-Into-Truncated-Type l2 k A) → equiv-Surjection-Into-Truncated-Type f g → f = g eq-equiv-Surjection-Into-Truncated-Type g = map-inv-equiv (extensionality-Surjection-Into-Truncated-Type g)
The type Surjection-Into-Truncated-Type l2 (succ-𝕋 k) A
is k
-truncated
This remains to be shown. #735
Characterization of the identity type of Surjection-Into-Set l2 A
equiv-Surjection-Into-Set : {l1 l2 l3 : Level} {A : UU l1} → Surjection-Into-Set l2 A → Surjection-Into-Set l3 A → UU (l1 ⊔ l2 ⊔ l3) equiv-Surjection-Into-Set = equiv-Surjection-Into-Truncated-Type id-equiv-Surjection-Into-Set : {l1 l2 : Level} {A : UU l1} (f : Surjection-Into-Set l2 A) → equiv-Surjection-Into-Set f f id-equiv-Surjection-Into-Set = id-equiv-Surjection-Into-Truncated-Type extensionality-Surjection-Into-Set : {l1 l2 : Level} {A : UU l1} (f g : Surjection-Into-Set l2 A) → (f = g) ≃ equiv-Surjection-Into-Set f g extensionality-Surjection-Into-Set = extensionality-Surjection-Into-Truncated-Type equiv-eq-Surjection-Into-Set : {l1 l2 : Level} {A : UU l1} (f g : Surjection-Into-Set l2 A) → (f = g) → equiv-Surjection-Into-Set f g equiv-eq-Surjection-Into-Set = equiv-eq-Surjection-Into-Truncated-Type refl-equiv-eq-Surjection-Into-Set : {l1 l2 : Level} {A : UU l1} (f : Surjection-Into-Set l2 A) → equiv-eq-Surjection-Into-Set f f refl = id-equiv-Surjection-Into-Set f refl-equiv-eq-Surjection-Into-Set = refl-equiv-eq-Surjection-Into-Truncated-Type eq-equiv-Surjection-Into-Set : {l1 l2 : Level} {A : UU l1} (f g : Surjection-Into-Set l2 A) → equiv-Surjection-Into-Set f g → f = g eq-equiv-Surjection-Into-Set = eq-equiv-Surjection-Into-Truncated-Type
Postcomposition of extensions along surjective maps by an embedding is an equivalence
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} where is-surjective-postcomp-extension-surjective-map : (f : A → B) (i : A → X) (g : X → Y) → is-surjective f → is-emb g → is-surjective (postcomp-extension f i g) is-surjective-postcomp-extension-surjective-map f i g H K (h , L) = unit-trunc-Prop ( ( j , N) , ( eq-htpy-extension f ( g ∘ i) ( postcomp-extension f i g (j , N)) ( h , L) ( M) ( λ a → ( ap ( concat' (g (i a)) (M (f a))) ( is-section-map-inv-is-equiv ( K (i a) (j (f a))) ( L a ∙ inv (M (f a))))) ∙ ( is-section-inv-concat' (M (f a)) (L a))))) where J : (b : B) → fiber g (h b) J = apply-dependent-universal-property-surjection-is-surjective f H ( λ b → fiber-emb-Prop (g , K) (h b)) ( λ a → (i a , L a)) j : B → X j b = pr1 (J b) M : (g ∘ j) ~ h M b = pr2 (J b) N : i ~ (j ∘ f) N a = map-inv-is-equiv (K (i a) (j (f a))) (L a ∙ inv (M (f a))) is-equiv-postcomp-extension-is-surjective : (f : A → B) (i : A → X) (g : X → Y) → is-surjective f → is-emb g → is-equiv (postcomp-extension f i g) is-equiv-postcomp-extension-is-surjective f i g H K = is-equiv-is-emb-is-surjective ( is-surjective-postcomp-extension-surjective-map f i g H K) ( is-emb-postcomp-extension f i g K) equiv-postcomp-extension-surjection : (f : A ↠ B) (i : A → X) (g : X ↪ Y) → extension (map-surjection f) i ≃ extension (map-surjection f) (map-emb g ∘ i) pr1 (equiv-postcomp-extension-surjection f i g) = postcomp-extension (map-surjection f) i (map-emb g) pr2 (equiv-postcomp-extension-surjection f i g) = is-equiv-postcomp-extension-is-surjective ( map-surjection f) ( i) ( map-emb g) ( is-surjective-map-surjection f) ( is-emb-map-emb g)
Every type that surjects onto an inhabited type is inhabited
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} where is-inhabited-is-surjective : {f : A → B} → is-surjective f → is-inhabited B → is-inhabited A is-inhabited-is-surjective F = rec-trunc-Prop ( is-inhabited-Prop A) ( rec-trunc-Prop (is-inhabited-Prop A) (unit-trunc-Prop ∘ pr1) ∘ F) is-inhabited-surjection : A ↠ B → is-inhabited B → is-inhabited A is-inhabited-surjection f = is-inhabited-is-surjective (is-surjective-map-surjection f)
The type of surjections A ↠ B
is equivalent to the type of families P
of inhabited types over B
equipped with an equivalence A ≃ Σ B P
This remains to be shown. #735
See also
- In Epimorphisms with respect to sets we show that a map is surjective if and only if it is an epimorphism with respect to sets.
Recent changes
- 2025-01-07. Fredrik Bakke. Logic (#1226).
- 2024-11-20. Fredrik Bakke. Two fixed point theorems (#1227).
- 2024-09-23. Fredrik Bakke. Cantor’s theorem and diagonal argument (#1185).
- 2024-04-12. Fredrik Bakke. chore: Rename
universal-property-surj
touniversal-property-surjection
(#1108). - 2024-04-11. Fredrik Bakke. Refactor diagonals (#1096).