Coproducts of species of types
Content created by Fredrik Bakke, Egbert Rijke and Victor Blanchi.
Created on 2023-03-21.
Last modified on 2024-02-06.
module species.coproducts-species-of-types where
Imports
open import foundation.cartesian-product-types open import foundation.coproduct-types open import foundation.equivalences open import foundation.functoriality-dependent-function-types open import foundation.type-theoretic-principle-of-choice open import foundation.universal-property-coproduct-types open import foundation.universe-levels open import species.morphisms-species-of-types open import species.species-of-types
Idea
The coproduct of two species of types F
and G
is the pointwise coproduct.
Definition
Coproduct on objects
coproduct-species-types : {l1 l2 l3 : Level} (F : species-types l1 l2) (G : species-types l1 l3) → species-types l1 (l2 ⊔ l3) coproduct-species-types F G X = F X + G X
Universal properties
Proof of (hom-species-types (species-types-coproduct F G) H) ≃ ((hom-species-types F H) × (hom-species-types G H)).
equiv-universal-property-coproduct-species-types : {l1 l2 l3 l4 : Level} (F : species-types l1 l2) (G : species-types l1 l3) (H : species-types l1 l4) → hom-species-types (coproduct-species-types F G) H ≃ ((hom-species-types F H) × (hom-species-types G H)) equiv-universal-property-coproduct-species-types F G H = ( distributive-Π-Σ) ∘e ( equiv-Π-equiv-family (λ X → equiv-universal-property-coproduct (H X)))
Recent changes
- 2024-02-06. Fredrik Bakke. Rename
(co)prod
to(co)product
(#1017). - 2023-09-26. Fredrik Bakke and Egbert Rijke. Maps of categories, functor categories, and small subprecategories (#794).
- 2023-09-11. Fredrik Bakke and Egbert Rijke. Some computations for different notions of equivalence (#711).
- 2023-05-28. Fredrik Bakke. Enforce even indentation and automate some conventions (#635).
- 2023-04-08. Victor Blanchi. Binomial theorem for coproduct Decomposition and definition of the Cauchy exponential of a species and a proof that the Cauchy exponential of a sum of species is the Cauchy product of the Cauchy exponentials (#548).