Extensions of functors between precategories
Content created by Egbert Rijke, Fernando Chu and Fredrik Bakke.
Created on 2024-08-29.
Last modified on 2024-08-29.
module category-theory.extensions-of-functors-precategories where
Imports
open import category-theory.functors-precategories open import category-theory.precategories open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.universe-levels
Idea
An
extension¶
functor F : C → D
between
precategories along another functor
p : C → C'
is a functor G : C' → D
such that g ∘ p = G
.
C
| \
p F
| \
∨ ∨
C' - G -> D
Definition
Extensions of dependent functions
module _ {l1 l2 l3 l4 l5 l6 : Level} (C : Precategory l1 l2) (C' : Precategory l3 l4) (D : Precategory l5 l6) (p : functor-Precategory C C') where is-extension-functor-Precategory : functor-Precategory C D → functor-Precategory C' D → UU (l1 ⊔ l2 ⊔ l5 ⊔ l6) is-extension-functor-Precategory F G = comp-functor-Precategory C C' D G p = F extension-functor-Precategory : functor-Precategory C D → UU (l1 ⊔ l2 ⊔ l3 ⊔ l4 ⊔ l5 ⊔ l6) extension-functor-Precategory F = Σ (functor-Precategory C' D) (is-extension-functor-Precategory F)
Recent changes
- 2024-08-29. Fernando Chu, Fredrik Bakke and Egbert Rijke. Cones, limits and reduced coslices of precats (#1161).