The multiplicative group of positive rational numbers
Content created by Fredrik Bakke and malarbol.
Created on 2024-04-25.
Last modified on 2024-04-25.
{-# OPTIONS --lossy-unification #-} module elementary-number-theory.multiplicative-group-of-positive-rational-numbers where
Imports
open import elementary-number-theory.multiplication-rational-numbers open import elementary-number-theory.multiplicative-monoid-of-rational-numbers open import elementary-number-theory.positive-rational-numbers open import elementary-number-theory.rational-numbers open import foundation.cartesian-product-types open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.universe-levels open import group-theory.abelian-groups open import group-theory.groups open import group-theory.monoids open import group-theory.submonoids
Idea
The submonoid of positive rational numbers in the multiplicative monoid of rational numbers is a commutative group.
Definitions
The positive inverse of a positive rational number
inv-ℚ⁺ : ℚ⁺ → ℚ⁺ pr1 (inv-ℚ⁺ (x , P)) = inv-is-positive-ℚ x P pr2 (inv-ℚ⁺ (x , P)) = is-positive-denominator-ℚ x
The multiplicative group of positive rational numbers
group-mul-ℚ⁺ : Group lzero pr1 group-mul-ℚ⁺ = semigroup-Submonoid monoid-mul-ℚ submonoid-mul-ℚ⁺ pr1 (pr2 group-mul-ℚ⁺) = is-unital-Monoid monoid-mul-ℚ⁺ pr1 (pr2 (pr2 group-mul-ℚ⁺)) = inv-ℚ⁺ pr1 (pr2 (pr2 (pr2 group-mul-ℚ⁺))) x = eq-ℚ⁺ ( left-inverse-law-mul-is-positive-ℚ ( rational-ℚ⁺ x) ( is-positive-rational-ℚ⁺ x)) pr2 (pr2 (pr2 (pr2 group-mul-ℚ⁺))) x = eq-ℚ⁺ ( right-inverse-law-mul-is-positive-ℚ ( rational-ℚ⁺ x) ( is-positive-rational-ℚ⁺ x))
Inverse laws in the multiplicative group of positive rational numbers
left-inverse-law-mul-ℚ⁺ : (x : ℚ⁺) → (inv-ℚ⁺ x) *ℚ⁺ x = one-ℚ⁺ left-inverse-law-mul-ℚ⁺ = left-inverse-law-mul-Group group-mul-ℚ⁺ right-inverse-law-mul-ℚ⁺ : (x : ℚ⁺) → x *ℚ⁺ (inv-ℚ⁺ x) = one-ℚ⁺ right-inverse-law-mul-ℚ⁺ = right-inverse-law-mul-Group group-mul-ℚ⁺
Properties
The multiplicative group of positive rational numbers is commutative
abelian-group-mul-ℚ⁺ : Ab lzero pr1 abelian-group-mul-ℚ⁺ = group-mul-ℚ⁺ pr2 abelian-group-mul-ℚ⁺ = commutative-mul-ℚ⁺
Recent changes
- 2024-04-25. malarbol and Fredrik Bakke. The discrete field of rational numbers (#1111).