Convergent series in metric abelian groups
Content created by Fredrik Bakke and Louis Wasserman.
Created on 2025-09-03.
Last modified on 2025-09-24.
module analysis.convergent-series-metric-abelian-groups where
Imports
open import analysis.metric-abelian-groups open import analysis.series-metric-abelian-groups open import foundation.dependent-pair-types open import foundation.propositions open import foundation.subtypes open import foundation.universe-levels open import lists.sequences open import metric-spaces.convergent-sequences-metric-spaces open import metric-spaces.limits-of-sequences-metric-spaces
Idea
A series in a metric abelian group is convergent¶ if its sequence of partial sums converges in the associated metric space.
Definition
module _ {l1 l2 : Level} (G : Metric-Ab l1 l2) (σ : series-Metric-Ab G) where is-convergent-prop-series-Metric-Ab : Prop (l1 ⊔ l2) is-convergent-prop-series-Metric-Ab = subtype-convergent-sequence-Metric-Space ( metric-space-Metric-Ab G) ( partial-sum-series-Metric-Ab G σ) is-convergent-series-Metric-Ab : UU (l1 ⊔ l2) is-convergent-series-Metric-Ab = type-Prop is-convergent-prop-series-Metric-Ab convergent-series-Metric-Ab : {l1 l2 : Level} (G : Metric-Ab l1 l2) → UU (l1 ⊔ l2) convergent-series-Metric-Ab G = type-subtype (is-convergent-prop-series-Metric-Ab G)
Properties
module _ {l1 l2 : Level} (G : Metric-Ab l1 l2) (σ : convergent-series-Metric-Ab G) where series-convergent-series-Metric-Ab : series-Metric-Ab G series-convergent-series-Metric-Ab = pr1 σ partial-sum-convergent-series-Metric-Ab : sequence (type-Metric-Ab G) partial-sum-convergent-series-Metric-Ab = partial-sum-series-Metric-Ab G series-convergent-series-Metric-Ab
The partial sums of a convergent series have a limit, the sum of the series
module _ {l1 l2 : Level} (G : Metric-Ab l1 l2) (σ : convergent-series-Metric-Ab G) where has-limit-partial-sum-convergent-series-Metric-Ab : has-limit-sequence-Metric-Space ( metric-space-Metric-Ab G) ( partial-sum-convergent-series-Metric-Ab G σ) has-limit-partial-sum-convergent-series-Metric-Ab = pr2 σ sum-convergent-series-Metric-Ab : type-Metric-Ab G sum-convergent-series-Metric-Ab = limit-has-limit-sequence-Metric-Space ( metric-space-Metric-Ab G) ( partial-sum-convergent-series-Metric-Ab G σ) ( has-limit-partial-sum-convergent-series-Metric-Ab) is-limit-partial-sum-convergent-series-Metric-Ab : is-limit-sequence-Metric-Space ( metric-space-Metric-Ab G) ( partial-sum-convergent-series-Metric-Ab G σ) ( sum-convergent-series-Metric-Ab) is-limit-partial-sum-convergent-series-Metric-Ab = is-limit-limit-has-limit-sequence-Metric-Space ( metric-space-Metric-Ab G) ( partial-sum-convergent-series-Metric-Ab G σ) ( has-limit-partial-sum-convergent-series-Metric-Ab)
External links
- Convergent series at Wikidata
Recent changes
- 2025-09-24. Fredrik Bakke. Fix Agda definition pointers in concept macros (#1549).
- 2025-09-03. Louis Wasserman. Series in metric abelian groups (#1528).