Convergent series in metric abelian groups
Content created by Louis Wasserman and Fredrik Bakke.
Created on 2025-09-03.
Last modified on 2025-12-30.
module analysis.convergent-series-metric-abelian-groups where
Imports
open import analysis.metric-abelian-groups open import analysis.series-metric-abelian-groups open import elementary-number-theory.addition-natural-numbers open import elementary-number-theory.inequality-natural-numbers open import elementary-number-theory.natural-numbers open import foundation.action-on-identifications-functions open import foundation.binary-transport open import foundation.dependent-pair-types open import foundation.functoriality-propositional-truncation open import foundation.identity-types open import foundation.logical-equivalences open import foundation.propositions open import foundation.subtypes open import foundation.transport-along-identifications open import foundation.universe-levels open import lists.sequences open import metric-spaces.convergent-sequences-metric-spaces open import metric-spaces.limits-of-sequences-metric-spaces
Idea
A series in a metric abelian group is convergent¶ if its sequence of partial sums converges in the associated metric space.
Definition
module _ {l1 l2 : Level} {G : Metric-Ab l1 l2} (σ : series-Metric-Ab G) where is-sum-prop-series-Metric-Ab : type-Metric-Ab G → Prop l2 is-sum-prop-series-Metric-Ab = is-limit-prop-sequence-Metric-Space ( metric-space-Metric-Ab G) ( partial-sum-series-Metric-Ab σ) is-sum-series-Metric-Ab : type-Metric-Ab G → UU l2 is-sum-series-Metric-Ab s = type-Prop (is-sum-prop-series-Metric-Ab s) is-convergent-prop-series-Metric-Ab : Prop (l1 ⊔ l2) is-convergent-prop-series-Metric-Ab = subtype-convergent-sequence-Metric-Space ( metric-space-Metric-Ab G) ( partial-sum-series-Metric-Ab σ) is-convergent-series-Metric-Ab : UU (l1 ⊔ l2) is-convergent-series-Metric-Ab = type-Prop is-convergent-prop-series-Metric-Ab convergent-series-Metric-Ab : {l1 l2 : Level} (G : Metric-Ab l1 l2) → UU (l1 ⊔ l2) convergent-series-Metric-Ab G = type-subtype (is-convergent-prop-series-Metric-Ab {G = G})
Properties
module _ {l1 l2 : Level} (G : Metric-Ab l1 l2) (σ : convergent-series-Metric-Ab G) where series-convergent-series-Metric-Ab : series-Metric-Ab G series-convergent-series-Metric-Ab = pr1 σ partial-sum-convergent-series-Metric-Ab : sequence (type-Metric-Ab G) partial-sum-convergent-series-Metric-Ab = partial-sum-series-Metric-Ab series-convergent-series-Metric-Ab
The partial sums of a convergent series converge to the sum of the series
module _ {l1 l2 : Level} (G : Metric-Ab l1 l2) (σ : convergent-series-Metric-Ab G) where has-limit-partial-sum-convergent-series-Metric-Ab : has-limit-sequence-Metric-Space ( metric-space-Metric-Ab G) ( partial-sum-convergent-series-Metric-Ab G σ) has-limit-partial-sum-convergent-series-Metric-Ab = pr2 σ sum-convergent-series-Metric-Ab : type-Metric-Ab G sum-convergent-series-Metric-Ab = limit-has-limit-sequence-Metric-Space ( metric-space-Metric-Ab G) ( partial-sum-convergent-series-Metric-Ab G σ) ( has-limit-partial-sum-convergent-series-Metric-Ab) is-limit-partial-sum-convergent-series-Metric-Ab : is-limit-sequence-Metric-Space ( metric-space-Metric-Ab G) ( partial-sum-convergent-series-Metric-Ab G σ) ( sum-convergent-series-Metric-Ab) is-limit-partial-sum-convergent-series-Metric-Ab = is-limit-limit-has-limit-sequence-Metric-Space ( metric-space-Metric-Ab G) ( partial-sum-convergent-series-Metric-Ab G σ) ( has-limit-partial-sum-convergent-series-Metric-Ab)
A series converges if it converges after dropping a finite number of terms
module _ {l1 l2 : Level} {G : Metric-Ab l1 l2} (σ : series-Metric-Ab G) (k : ℕ) where is-convergent-is-convergent-drop-series-ℝ : is-convergent-series-Metric-Ab (drop-series-Metric-Ab k σ) → is-convergent-series-Metric-Ab σ is-convergent-is-convergent-drop-series-ℝ (lim-drop , is-lim-drop) = ( add-Metric-Ab G (partial-sum-series-Metric-Ab σ k) lim-drop , map-trunc-Prop ( λ (μ , is-mod-μ) → ( ( λ ε → μ ε +ℕ k) , ( λ ε n με+k≤n → let (l , l+k=n) = subtraction-leq-ℕ ( k) ( n) ( transitive-leq-ℕ ( k) ( μ ε +ℕ k) ( n) ( με+k≤n) ( leq-add-ℕ' k (μ ε))) in tr ( λ x → neighborhood-Metric-Ab G ε x _) ( equational-reasoning add-Metric-Ab G ( partial-sum-series-Metric-Ab σ k) ( partial-sum-series-Metric-Ab ( drop-series-Metric-Ab k σ) ( l)) = add-Metric-Ab G ( partial-sum-series-Metric-Ab σ k) ( diff-Metric-Ab G ( partial-sum-series-Metric-Ab σ (k +ℕ l)) ( partial-sum-series-Metric-Ab σ k)) by ap-add-Metric-Ab G ( refl) ( partial-sum-drop-series-Metric-Ab k σ l) = partial-sum-series-Metric-Ab σ (k +ℕ l) by is-identity-right-conjugation-Metric-Ab G _ _ = partial-sum-series-Metric-Ab σ n by ap ( partial-sum-series-Metric-Ab σ) ( commutative-add-ℕ k l ∙ l+k=n)) ( forward-implication ( is-isometry-add-Metric-Ab ( G) ( partial-sum-series-Metric-Ab σ k) ( ε) ( partial-sum-series-Metric-Ab ( drop-series-Metric-Ab k σ) ( l)) ( lim-drop)) ( is-mod-μ ( ε) ( l) ( reflects-leq-left-add-ℕ ( k) ( μ ε) ( l) ( inv-tr (leq-ℕ (μ ε +ℕ k)) l+k=n με+k≤n))))))) ( is-lim-drop))
External links
- Convergent series at Wikidata
Recent changes
- 2025-12-30. Louis Wasserman. The ratio test for convergence in real Banach spaces (#1716).
- 2025-11-16. Louis Wasserman. The harmonic series diverges (#1708).
- 2025-11-08. Louis Wasserman. The sum of rational geometric series (#1672).
- 2025-11-06. Louis Wasserman. The sum of the reciprocals of the triangular numbers is 2 (#1665).
- 2025-09-24. Fredrik Bakke. Fix Agda definition pointers in concept macros (#1549).