Addition of complex numbers
Content created by Louis Wasserman.
Created on 2025-10-11.
Last modified on 2025-10-11.
module complex-numbers.addition-complex-numbers where
Imports
open import complex-numbers.complex-numbers open import complex-numbers.similarity-complex-numbers open import foundation.action-on-identifications-binary-functions open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.universe-levels open import real-numbers.addition-real-numbers
Idea
We introduce addition¶ on the complex numbers by componentwise addition of the real and imaginary parts.
Definition
add-ℂ : {l1 l2 : Level} → ℂ l1 → ℂ l2 → ℂ (l1 ⊔ l2) add-ℂ (a , b) (c , d) = (a +ℝ c , b +ℝ d) infixl 35 _+ℂ_ _+ℂ_ : {l1 l2 : Level} → ℂ l1 → ℂ l2 → ℂ (l1 ⊔ l2) _+ℂ_ = add-ℂ ap-add-ℂ : {l1 l2 : Level} → {x x' : ℂ l1} → x = x' → {y y' : ℂ l2} → y = y' → x +ℂ y = x' +ℂ y' ap-add-ℂ = ap-binary add-ℂ
Properties
Addition is commutative
abstract commutative-add-ℂ : {l1 l2 : Level} (x : ℂ l1) (y : ℂ l2) → x +ℂ y = y +ℂ x commutative-add-ℂ _ _ = eq-ℂ (commutative-add-ℝ _ _) (commutative-add-ℝ _ _)
Addition is associative
abstract associative-add-ℂ : {l1 l2 l3 : Level} (x : ℂ l1) (y : ℂ l2) (z : ℂ l3) → (x +ℂ y) +ℂ z = x +ℂ (y +ℂ z) associative-add-ℂ _ _ _ = eq-ℂ (associative-add-ℝ _ _ _) (associative-add-ℝ _ _ _)
Unit laws of addition
abstract left-unit-law-add-ℂ : {l : Level} (x : ℂ l) → zero-ℂ +ℂ x = x left-unit-law-add-ℂ (a , b) = eq-ℂ (left-unit-law-add-ℝ a) (left-unit-law-add-ℝ b) right-unit-law-add-ℂ : {l : Level} (x : ℂ l) → x +ℂ zero-ℂ = x right-unit-law-add-ℂ (a , b) = eq-ℂ (right-unit-law-add-ℝ a) (right-unit-law-add-ℝ b)
Inverse laws of addition
abstract left-inverse-law-add-ℂ : {l : Level} (x : ℂ l) → sim-ℂ (neg-ℂ x +ℂ x) zero-ℂ left-inverse-law-add-ℂ (a , b) = ( left-inverse-law-add-ℝ a , left-inverse-law-add-ℝ b) right-inverse-law-add-ℂ : {l : Level} (x : ℂ l) → sim-ℂ (x +ℂ neg-ℂ x) zero-ℂ right-inverse-law-add-ℂ (a , b) = ( right-inverse-law-add-ℝ a , right-inverse-law-add-ℝ b)
Recent changes
- 2025-10-11. Louis Wasserman. Complex numbers (#1573).