Markovian types

Content created by Fredrik Bakke.

Created on 2025-01-07.
Last modified on 2025-08-14.

module logic.markovian-types where
Imports
open import foundation.booleans
open import foundation.decidable-subtypes
open import foundation.existential-quantification
open import foundation.function-types
open import foundation.negation
open import foundation.universal-quantification
open import foundation.universe-levels

open import foundation-core.propositions

Idea

A type A is Markovian if, for every decidable subtype 𝒫 of A, if 𝒫 is not full then there is an element of A that is not in 𝒫.

Definitions

The predicate of being Markovian

We phrase the condition using the type of booleans so that the predicate is small.

is-markovian : {l : Level}  UU l  UU l
is-markovian A =
  (𝒫 : A  bool) 
  ¬ ((x : A)  is-true (𝒫 x)) 
  exists A  x  is-false-Prop (𝒫 x))

is-prop-is-markovian : {l : Level} (A : UU l)  is-prop (is-markovian A)
is-prop-is-markovian A =
  is-prop-Π  𝒫  is-prop-function-type (is-prop-exists A (is-false-Prop  𝒫)))

The predicate of being Markovian at a universe level

module _
  {l1 : Level} (l2 : Level) (A : UU l1)
  where

  is-markovian-prop-Level : Prop (l1  lsuc l2)
  is-markovian-prop-Level =
    Π-Prop
      ( decidable-subtype l2 A)
      ( λ P 
        ¬' (∀' A (subtype-decidable-subtype P)) 
         A (¬'_  subtype-decidable-subtype P))

  is-markovian-Level : UU (l1  lsuc l2)
  is-markovian-Level =
      (P : decidable-subtype l2 A) 
      ¬ ((x : A)  is-in-decidable-subtype P x) 
      exists A (¬'_  subtype-decidable-subtype P)

  is-prop-is-markovian-Level : is-prop is-markovian-Level
  is-prop-is-markovian-Level = is-prop-type-Prop is-markovian-prop-Level

Properties

A type is Markovian if and only if it is Markovian at any universe level

This remains to be formalized.

A type is Markovian if and only if it is Markovian at all universe levels

This remains to be formalized.

Types with decidability search are Markovian

This remains to be formalized.

See also

Recent changes