Rational approximations of zero
Content created by malarbol.
Created on 2025-05-27.
Last modified on 2025-05-27.
{-# OPTIONS --lossy-unification #-} module metric-spaces.rational-approximations-of-zero where
Imports
open import elementary-number-theory.absolute-value-rational-numbers open import elementary-number-theory.addition-rational-numbers open import elementary-number-theory.difference-rational-numbers open import elementary-number-theory.distance-rational-numbers open import elementary-number-theory.inequality-rational-numbers open import elementary-number-theory.nonnegative-rational-numbers open import elementary-number-theory.positive-rational-numbers open import elementary-number-theory.rational-numbers open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.functoriality-dependent-pair-types open import foundation.identity-types open import foundation.propositions open import foundation.retractions open import foundation.sections open import foundation.subtypes open import foundation.transport-along-identifications open import foundation.universe-levels open import metric-spaces.cauchy-approximations-metric-spaces open import metric-spaces.convergent-cauchy-approximations-metric-spaces open import metric-spaces.metric-space-of-rational-numbers open import metric-spaces.metric-spaces open import metric-spaces.rational-cauchy-approximations
Idea
A map from the
positive rational numbers
to the rationals f : ℚ⁺ → ℚ
is
a rational approximation of zero¶ if
|f ε| ≤ ε
for all ε : ℚ⁺
. The type of rational approximations of zero is
equivalent to the type of
rational Cauchy approximations
converging to
zero.
Definitions
Rational approximations of zero
module _ (f : ℚ⁺ → ℚ) where subtype-approximation-of-zero-ℚ : Prop lzero subtype-approximation-of-zero-ℚ = Π-Prop ( ℚ⁺) ( λ ε → leq-ℚ-Prop (rational-abs-ℚ (f ε)) (rational-ℚ⁺ ε)) is-approximation-of-zero-ℚ : UU lzero is-approximation-of-zero-ℚ = type-Prop subtype-approximation-of-zero-ℚ approximation-of-zero-ℚ : UU lzero approximation-of-zero-ℚ = type-subtype subtype-approximation-of-zero-ℚ module _ (f : approximation-of-zero-ℚ) where map-approximation-of-zero-ℚ : ℚ⁺ → ℚ map-approximation-of-zero-ℚ = pr1 f is-approximation-of-zero-map-approximation-of-zero-ℚ : is-approximation-of-zero-ℚ map-approximation-of-zero-ℚ is-approximation-of-zero-map-approximation-of-zero-ℚ = pr2 f
The type of rational Cauchy approximations converging to zero
zero-limit-cauchy-approximation-ℚ : UU lzero zero-limit-cauchy-approximation-ℚ = type-subtype ( λ f → is-limit-cauchy-approximation-prop-Metric-Space metric-space-leq-ℚ f zero-ℚ) module _ (f : zero-limit-cauchy-approximation-ℚ) where approximation-zero-limit-cauchy-approximation-ℚ : cauchy-approximation-ℚ approximation-zero-limit-cauchy-approximation-ℚ = pr1 f map-zero-limit-cauchy-approximation-ℚ : ℚ⁺ → ℚ map-zero-limit-cauchy-approximation-ℚ = map-cauchy-approximation-ℚ approximation-zero-limit-cauchy-approximation-ℚ is-cauchy-map-zero-limit-cauchy-approximation-ℚ : is-cauchy-approximation-Metric-Space metric-space-leq-ℚ map-zero-limit-cauchy-approximation-ℚ is-cauchy-map-zero-limit-cauchy-approximation-ℚ = is-cauchy-map-cauchy-approximation-ℚ approximation-zero-limit-cauchy-approximation-ℚ is-zero-limit-approximation-zero-limit-cauchy-approximation-ℚ : is-limit-cauchy-approximation-Metric-Space metric-space-leq-ℚ approximation-zero-limit-cauchy-approximation-ℚ zero-ℚ is-zero-limit-approximation-zero-limit-cauchy-approximation-ℚ = pr2 f
Properties
The type of rational approximations of zero is equivalent to the type of Cauchy approximations converging to zero
module _ (f : ℚ⁺ → ℚ) (is-approximation-of-zero-f : is-approximation-of-zero-ℚ f) where abstract is-cauchy-approximation-is-approximation-of-zero-ℚ : is-cauchy-approximation-Metric-Space metric-space-leq-ℚ f is-cauchy-approximation-is-approximation-of-zero-ℚ ε δ = neighborhood-leq-leq-dist-ℚ ( ε +ℚ⁺ δ) ( f ε) ( f δ) ( transitive-leq-ℚ ( rational-dist-ℚ (f ε) (f δ)) ( (rational-abs-ℚ (f ε)) +ℚ (rational-abs-ℚ (f δ))) ( rational-ℚ⁺ (ε +ℚ⁺ δ)) ( preserves-leq-add-ℚ { rational-abs-ℚ (f ε)} { rational-ℚ⁺ ε} { rational-abs-ℚ (f δ)} { rational-ℚ⁺ δ} ( is-approximation-of-zero-f ε) ( is-approximation-of-zero-f δ)) ( leq-dist-add-abs-ℚ (f ε) (f δ))) cauchy-approximation-is-approximation-of-zero-ℚ : cauchy-approximation-ℚ cauchy-approximation-is-approximation-of-zero-ℚ = (f , is-cauchy-approximation-is-approximation-of-zero-ℚ) abstract is-zero-limit-is-approximation-of-zero-ℚ : is-limit-cauchy-approximation-Metric-Space metric-space-leq-ℚ cauchy-approximation-is-approximation-of-zero-ℚ zero-ℚ is-zero-limit-is-approximation-of-zero-ℚ ε δ = neighborhood-leq-leq-dist-ℚ ( ε +ℚ⁺ δ) ( f ε) ( zero-ℚ) ( transitive-leq-ℚ ( rational-abs-ℚ ( f ε -ℚ zero-ℚ)) ( rational-ℚ⁺ ε) ( rational-ℚ⁺ (ε +ℚ⁺ δ)) ( leq-le-ℚ⁺ {ε} {ε +ℚ⁺ δ} (le-left-add-ℚ⁺ ε δ)) ( inv-tr ( λ y → leq-ℚ (rational-ℚ⁰⁺ y) (rational-ℚ⁺ ε)) ( right-zero-law-dist-ℚ ( f ε)) ( is-approximation-of-zero-f ε))) module _ (f : approximation-of-zero-ℚ) where cauchy-approximation-of-zero-ℚ : cauchy-approximation-ℚ cauchy-approximation-of-zero-ℚ = cauchy-approximation-is-approximation-of-zero-ℚ ( map-approximation-of-zero-ℚ f) ( is-approximation-of-zero-map-approximation-of-zero-ℚ f) is-zero-limit-cauchy-approximation-of-zero-ℚ : is-limit-cauchy-approximation-Metric-Space metric-space-leq-ℚ cauchy-approximation-of-zero-ℚ zero-ℚ is-zero-limit-cauchy-approximation-of-zero-ℚ = is-zero-limit-is-approximation-of-zero-ℚ ( map-approximation-of-zero-ℚ f) ( is-approximation-of-zero-map-approximation-of-zero-ℚ f) zero-limit-cauchy-approximation-of-zero-ℚ : zero-limit-cauchy-approximation-ℚ zero-limit-cauchy-approximation-of-zero-ℚ = cauchy-approximation-of-zero-ℚ , is-zero-limit-cauchy-approximation-of-zero-ℚ module _ ( f : cauchy-approximation-ℚ) ( L : is-limit-cauchy-approximation-Metric-Space metric-space-leq-ℚ f zero-ℚ) where abstract is-approximation-is-zero-limit-cauchy-approximation-ℚ : is-approximation-of-zero-ℚ (map-cauchy-approximation-ℚ f) is-approximation-is-zero-limit-cauchy-approximation-ℚ ε = tr ( λ y → leq-ℚ y (rational-ℚ⁺ ε)) ( ap ( rational-ℚ⁰⁺) ( right-zero-law-dist-ℚ (map-cauchy-approximation-ℚ f ε))) ( leq-dist-neighborhood-leq-ℚ ( ε) ( map-cauchy-approximation-ℚ f ε) ( zero-ℚ) ( is-saturated-metric-space-leq-ℚ ( ε) ( map-cauchy-approximation-ℚ f ε) ( zero-ℚ) ( L ε))) approximation-of-zero-is-zero-limit-cauchy-approximation-ℚ : approximation-of-zero-ℚ approximation-of-zero-is-zero-limit-cauchy-approximation-ℚ = ( map-cauchy-approximation-ℚ f) , ( is-approximation-is-zero-limit-cauchy-approximation-ℚ) approximation-of-zero-limit-cauchy-approximation-ℚ : zero-limit-cauchy-approximation-ℚ → approximation-of-zero-ℚ approximation-of-zero-limit-cauchy-approximation-ℚ = rec-Σ approximation-of-zero-is-zero-limit-cauchy-approximation-ℚ section-zero-limit-cauchy-approximation-of-zero-ℚ : section zero-limit-cauchy-approximation-of-zero-ℚ section-zero-limit-cauchy-approximation-of-zero-ℚ = ( approximation-of-zero-limit-cauchy-approximation-ℚ) , ( λ f → eq-type-subtype ( λ h → is-limit-cauchy-approximation-prop-Metric-Space metric-space-leq-ℚ h zero-ℚ) ( eq-type-subtype ( is-cauchy-approximation-prop-Metric-Space metric-space-leq-ℚ) ( refl))) retraction-zero-limit-cauchy-approximation-of-zero-ℚ : retraction zero-limit-cauchy-approximation-of-zero-ℚ retraction-zero-limit-cauchy-approximation-of-zero-ℚ = ( approximation-of-zero-limit-cauchy-approximation-ℚ) , ( λ f → eq-type-subtype ( subtype-approximation-of-zero-ℚ) ( refl)) is-equiv-zero-limit-cauchy-approximation-of-zero-ℚ : is-equiv zero-limit-cauchy-approximation-of-zero-ℚ is-equiv-zero-limit-cauchy-approximation-of-zero-ℚ = section-zero-limit-cauchy-approximation-of-zero-ℚ , retraction-zero-limit-cauchy-approximation-of-zero-ℚ equiv-zero-limit-cacuhy-approximation-of-zero-ℚ : approximation-of-zero-ℚ ≃ zero-limit-cauchy-approximation-ℚ equiv-zero-limit-cacuhy-approximation-of-zero-ℚ = zero-limit-cauchy-approximation-of-zero-ℚ , is-equiv-zero-limit-cauchy-approximation-of-zero-ℚ
Recent changes
- 2025-05-27. malarbol. Zero approximations (#1424).