Tuples on commutative semirings
Content created by Louis Wasserman.
Created on 2025-05-14.
Last modified on 2025-05-14.
module linear-algebra.tuples-on-commutative-semirings where
Imports
open import commutative-algebra.commutative-semirings open import elementary-number-theory.natural-numbers open import foundation.identity-types open import foundation.universe-levels open import group-theory.commutative-monoids open import group-theory.monoids open import group-theory.semigroups open import linear-algebra.constant-tuples open import linear-algebra.tuples-on-semirings
Idea
Tuples on a commutative semiring
R
are tuples on the underlying type of R
. The commutative
semiring structure on R
induces further structure on the type of tuples on
R
.
Definitions
module _ {l : Level} (R : Commutative-Semiring l) where tuple-Commutative-Semiring : ℕ → UU l tuple-Commutative-Semiring = tuple-Semiring (semiring-Commutative-Semiring R) head-tuple-Commutative-Semiring : {n : ℕ} → tuple-Commutative-Semiring (succ-ℕ n) → type-Commutative-Semiring R head-tuple-Commutative-Semiring = head-tuple-Semiring (semiring-Commutative-Semiring R) tail-tuple-Commutative-Semiring : {n : ℕ} → tuple-Commutative-Semiring (succ-ℕ n) → tuple-Commutative-Semiring n tail-tuple-Commutative-Semiring = tail-tuple-Semiring (semiring-Commutative-Semiring R) snoc-tuple-Commutative-Semiring : {n : ℕ} → tuple-Commutative-Semiring n → type-Commutative-Semiring R → tuple-Commutative-Semiring (succ-ℕ n) snoc-tuple-Commutative-Semiring = snoc-tuple-Semiring (semiring-Commutative-Semiring R)
The zero tuple in a commutative semiring
module _ {l : Level} (R : Commutative-Semiring l) where zero-tuple-Commutative-Semiring : {n : ℕ} → tuple-Commutative-Semiring R n zero-tuple-Commutative-Semiring = constant-tuple (zero-Commutative-Semiring R)
Pointwise addition of tuples on a commutative semiring
module _ {l : Level} (R : Commutative-Semiring l) where add-tuple-Commutative-Semiring : {n : ℕ} → tuple-Commutative-Semiring R n → tuple-Commutative-Semiring R n → tuple-Commutative-Semiring R n add-tuple-Commutative-Semiring = add-tuple-Semiring (semiring-Commutative-Semiring R)
Properties of pointwise addition
Associativity of pointwise addition
module _ {l : Level} (R : Commutative-Semiring l) where associative-add-tuple-Commutative-Semiring : {n : ℕ} (v1 v2 v3 : tuple-Commutative-Semiring R n) → add-tuple-Commutative-Semiring R (add-tuple-Commutative-Semiring R v1 v2) v3 = add-tuple-Commutative-Semiring R v1 (add-tuple-Commutative-Semiring R v2 v3) associative-add-tuple-Commutative-Semiring = associative-add-tuple-Semiring (semiring-Commutative-Semiring R)
Unit laws of pointwise addition
module _ {l : Level} (R : Commutative-Semiring l) where left-unit-law-add-tuple-Commutative-Semiring : {n : ℕ} (v : tuple-Commutative-Semiring R n) → add-tuple-Commutative-Semiring R (zero-tuple-Commutative-Semiring R) v = v left-unit-law-add-tuple-Commutative-Semiring = left-unit-law-add-tuple-Semiring (semiring-Commutative-Semiring R) right-unit-law-add-tuple-Commutative-Semiring : {n : ℕ} (v : tuple-Commutative-Semiring R n) → add-tuple-Commutative-Semiring R v (zero-tuple-Commutative-Semiring R) = v right-unit-law-add-tuple-Commutative-Semiring = right-unit-law-add-tuple-Semiring (semiring-Commutative-Semiring R)
Commutativity of pointwise addition
module _ {l : Level} (R : Commutative-Semiring l) where commutative-add-tuple-Commutative-Semiring : {n : ℕ} (v w : tuple-Commutative-Semiring R n) → add-tuple-Commutative-Semiring R v w = add-tuple-Commutative-Semiring R w v commutative-add-tuple-Commutative-Semiring = commutative-add-tuple-Semiring (semiring-Commutative-Semiring R)
The commutative monoid of pointwise addition
module _ {l : Level} (R : Commutative-Semiring l) where tuple-Commutative-Semiring-Semigroup : ℕ → Semigroup l tuple-Commutative-Semiring-Semigroup = tuple-Semiring-Semigroup (semiring-Commutative-Semiring R) tuple-Commutative-Semiring-Monoid : ℕ → Monoid l tuple-Commutative-Semiring-Monoid = tuple-Semiring-Monoid (semiring-Commutative-Semiring R) tuple-Commutative-Semiring-Commutative-Monoid : ℕ → Commutative-Monoid l tuple-Commutative-Semiring-Commutative-Monoid = tuple-Semiring-Commutative-Monoid (semiring-Commutative-Semiring R)
Recent changes
- 2025-05-14. Louis Wasserman. Refactor linear algebra to use “tuples” for what was “vectors” (#1397).