The difference isometry on real numbers
Content created by Louis Wasserman.
Created on 2025-11-10.
Last modified on 2025-11-10.
{-# OPTIONS --lossy-unification #-} module real-numbers.isometry-difference-real-numbers where
Imports
open import foundation.dependent-pair-types open import foundation.universe-levels open import metric-spaces.isometries-metric-spaces open import metric-spaces.uniformly-continuous-functions-metric-spaces open import real-numbers.addition-real-numbers open import real-numbers.dedekind-real-numbers open import real-numbers.difference-real-numbers open import real-numbers.isometry-addition-real-numbers open import real-numbers.isometry-negation-real-numbers open import real-numbers.metric-space-of-real-numbers open import real-numbers.negation-real-numbers
Idea
Subtracting from a fixed real number is an isometry from the metric space of real numbers to itself.
Definition
module _ {l1 l2 : Level} (x : ℝ l1) where abstract is-isometry-diff-ℝ : is-isometry-Metric-Space ( metric-space-ℝ l2) ( metric-space-ℝ (l1 ⊔ l2)) ( diff-ℝ x) is-isometry-diff-ℝ = is-isometry-comp-is-isometry-Metric-Space ( metric-space-ℝ l2) ( metric-space-ℝ l2) ( metric-space-ℝ (l1 ⊔ l2)) ( add-ℝ x) ( neg-ℝ) ( is-isometry-left-add-ℝ x) ( is-isometry-neg-ℝ) isometry-diff-ℝ : isometry-Metric-Space (metric-space-ℝ l2) (metric-space-ℝ (l1 ⊔ l2)) isometry-diff-ℝ = (diff-ℝ x , is-isometry-diff-ℝ) uniformly-continuous-diff-ℝ : uniformly-continuous-function-Metric-Space ( metric-space-ℝ l2) ( metric-space-ℝ (l1 ⊔ l2)) uniformly-continuous-diff-ℝ = uniformly-continuous-isometry-Metric-Space ( metric-space-ℝ l2) ( metric-space-ℝ (l1 ⊔ l2)) ( isometry-diff-ℝ)
Recent changes
- 2025-11-10. Louis Wasserman. The sum of geometric series in the real numbers (#1676).