The difference isometry on real numbers

Content created by Louis Wasserman.

Created on 2025-11-10.
Last modified on 2025-11-10.

{-# OPTIONS --lossy-unification #-}

module real-numbers.isometry-difference-real-numbers where
Imports
open import foundation.dependent-pair-types
open import foundation.universe-levels

open import metric-spaces.isometries-metric-spaces
open import metric-spaces.uniformly-continuous-functions-metric-spaces

open import real-numbers.addition-real-numbers
open import real-numbers.dedekind-real-numbers
open import real-numbers.difference-real-numbers
open import real-numbers.isometry-addition-real-numbers
open import real-numbers.isometry-negation-real-numbers
open import real-numbers.metric-space-of-real-numbers
open import real-numbers.negation-real-numbers

Idea

Subtracting from a fixed real number is an isometry from the metric space of real numbers to itself.

Definition

module _
  {l1 l2 : Level} (x :  l1)
  where

  abstract
    is-isometry-diff-ℝ :
      is-isometry-Metric-Space
        ( metric-space-ℝ l2)
        ( metric-space-ℝ (l1  l2))
        ( diff-ℝ x)
    is-isometry-diff-ℝ =
      is-isometry-comp-is-isometry-Metric-Space
        ( metric-space-ℝ l2)
        ( metric-space-ℝ l2)
        ( metric-space-ℝ (l1  l2))
        ( add-ℝ x)
        ( neg-ℝ)
        ( is-isometry-left-add-ℝ x)
        ( is-isometry-neg-ℝ)

  isometry-diff-ℝ :
    isometry-Metric-Space (metric-space-ℝ l2) (metric-space-ℝ (l1  l2))
  isometry-diff-ℝ = (diff-ℝ x , is-isometry-diff-ℝ)

  uniformly-continuous-diff-ℝ :
    uniformly-continuous-function-Metric-Space
      ( metric-space-ℝ l2)
      ( metric-space-ℝ (l1  l2))
  uniformly-continuous-diff-ℝ =
    uniformly-continuous-isometry-Metric-Space
      ( metric-space-ℝ l2)
      ( metric-space-ℝ (l1  l2))
      ( isometry-diff-ℝ)

Recent changes