Decidable total orders
Content created by Fredrik Bakke, Egbert Rijke, Julian KG, fernabnor and louismntnu.
Created on 2023-05-05.
Last modified on 2024-11-20.
module order-theory.decidable-total-orders where
Imports
open import foundation.binary-relations open import foundation.coproduct-types open import foundation.decidable-propositions open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.propositions open import foundation.sets open import foundation.universe-levels open import order-theory.decidable-posets open import order-theory.decidable-total-preorders open import order-theory.posets open import order-theory.preorders open import order-theory.total-orders
Idea
A decidable total order is a total order of which the inequality relation is decidable.
Definitions
The predicate on posets of being decidable total orders
is-decidable-total-prop-Poset : {l1 l2 : Level} → Poset l1 l2 → Prop (l1 ⊔ l2) is-decidable-total-prop-Poset P = product-Prop (is-total-Poset-Prop P) (is-decidable-leq-prop-Poset P) is-decidable-total-Poset : {l1 l2 : Level} → Poset l1 l2 → UU (l1 ⊔ l2) is-decidable-total-Poset P = type-Prop (is-decidable-total-prop-Poset P) is-prop-is-decidable-total-Poset : {l1 l2 : Level} (P : Poset l1 l2) → is-prop (is-decidable-total-Poset P) is-prop-is-decidable-total-Poset P = is-prop-type-Prop (is-decidable-total-prop-Poset P)
The type of decidable total orders
Decidable-Total-Order : (l1 l2 : Level) → UU (lsuc l1 ⊔ lsuc l2) Decidable-Total-Order l1 l2 = Σ (Poset l1 l2) (is-decidable-total-Poset) module _ {l1 l2 : Level} (P : Decidable-Total-Order l1 l2) where poset-Decidable-Total-Order : Poset l1 l2 poset-Decidable-Total-Order = pr1 P is-total-poset-Decidable-Total-Order : is-total-Poset (poset-Decidable-Total-Order) is-total-poset-Decidable-Total-Order = pr1 (pr2 P) is-decidable-poset-Decidable-Total-Order : is-decidable-leq-Poset (poset-Decidable-Total-Order) is-decidable-poset-Decidable-Total-Order = pr2 (pr2 P) type-Decidable-Total-Order : UU l1 type-Decidable-Total-Order = type-Poset poset-Decidable-Total-Order leq-Decidable-Total-Order-Prop : (x y : type-Decidable-Total-Order) → Prop l2 leq-Decidable-Total-Order-Prop = leq-prop-Poset poset-Decidable-Total-Order leq-Decidable-Total-Order : (x y : type-Decidable-Total-Order) → UU l2 leq-Decidable-Total-Order = leq-Poset poset-Decidable-Total-Order is-prop-leq-Decidable-Total-Order : (x y : type-Decidable-Total-Order) → is-prop (leq-Decidable-Total-Order x y) is-prop-leq-Decidable-Total-Order = is-prop-leq-Poset poset-Decidable-Total-Order le-Decidable-Total-Order-Prop : (x y : type-Decidable-Total-Order) → Prop (l1 ⊔ l2) le-Decidable-Total-Order-Prop = le-prop-Poset poset-Decidable-Total-Order le-Decidable-Total-Order : (x y : type-Decidable-Total-Order) → UU (l1 ⊔ l2) le-Decidable-Total-Order = le-Poset poset-Decidable-Total-Order is-prop-le-Decidable-Total-Order : (x y : type-Decidable-Total-Order) → is-prop (le-Decidable-Total-Order x y) is-prop-le-Decidable-Total-Order = is-prop-le-Poset poset-Decidable-Total-Order decidable-poset-Decidable-Total-Order : Decidable-Poset l1 l2 pr1 decidable-poset-Decidable-Total-Order = poset-Decidable-Total-Order pr2 decidable-poset-Decidable-Total-Order = is-decidable-poset-Decidable-Total-Order leq-total-decidable-poset-decidable-Prop : (x y : type-Decidable-Total-Order) → Decidable-Prop l2 leq-total-decidable-poset-decidable-Prop = leq-decidable-poset-decidable-Prop decidable-poset-Decidable-Total-Order concatenate-eq-leq-Decidable-Total-Order : {x y z : type-Decidable-Total-Order} → x = y → leq-Decidable-Total-Order y z → leq-Decidable-Total-Order x z concatenate-eq-leq-Decidable-Total-Order = concatenate-eq-leq-Poset poset-Decidable-Total-Order concatenate-leq-eq-Decidable-Total-Order : {x y z : type-Decidable-Total-Order} → leq-Decidable-Total-Order x y → y = z → leq-Decidable-Total-Order x z concatenate-leq-eq-Decidable-Total-Order = concatenate-leq-eq-Poset poset-Decidable-Total-Order refl-leq-Decidable-Total-Order : is-reflexive leq-Decidable-Total-Order refl-leq-Decidable-Total-Order = refl-leq-Poset poset-Decidable-Total-Order transitive-leq-Decidable-Total-Order : is-transitive leq-Decidable-Total-Order transitive-leq-Decidable-Total-Order = transitive-leq-Poset poset-Decidable-Total-Order preorder-Decidable-Total-Order : Preorder l1 l2 preorder-Decidable-Total-Order = preorder-Poset poset-Decidable-Total-Order decidable-total-preorder-Decidable-Total-Order : Decidable-Total-Preorder l1 l2 pr1 decidable-total-preorder-Decidable-Total-Order = preorder-Decidable-Total-Order pr1 (pr2 decidable-total-preorder-Decidable-Total-Order) = is-total-poset-Decidable-Total-Order pr2 (pr2 decidable-total-preorder-Decidable-Total-Order) = is-decidable-poset-Decidable-Total-Order leq-or-strict-greater-Decidable-Poset : (x y : type-Decidable-Total-Order) → UU (l1 ⊔ l2) leq-or-strict-greater-Decidable-Poset = leq-or-strict-greater-Decidable-Preorder decidable-total-preorder-Decidable-Total-Order is-leq-or-strict-greater-Decidable-Total-Order : (x y : type-Decidable-Total-Order) → leq-or-strict-greater-Decidable-Poset x y is-leq-or-strict-greater-Decidable-Total-Order = is-leq-or-strict-greater-Decidable-Total-Preorder decidable-total-preorder-Decidable-Total-Order antisymmetric-leq-Decidable-Total-Order : (x y : type-Decidable-Total-Order) → leq-Decidable-Total-Order x y → leq-Decidable-Total-Order y x → Id x y antisymmetric-leq-Decidable-Total-Order = antisymmetric-leq-Poset poset-Decidable-Total-Order is-prop-leq-or-strict-greater-Decidable-Total-Order : (x y : type-Decidable-Total-Order) → is-prop (leq-or-strict-greater-Decidable-Poset x y) is-prop-leq-or-strict-greater-Decidable-Total-Order x y = is-prop-coproduct ( λ p q → pr1 q (inv (antisymmetric-leq-Decidable-Total-Order x y p (pr2 q)))) ( is-prop-leq-Decidable-Total-Order x y) ( is-prop-le-Decidable-Total-Order y x) is-set-type-Decidable-Total-Order : is-set type-Decidable-Total-Order is-set-type-Decidable-Total-Order = is-set-type-Poset poset-Decidable-Total-Order set-Decidable-Total-Order : Set l1 set-Decidable-Total-Order = set-Poset poset-Decidable-Total-Order
Recent changes
- 2024-11-20. Fredrik Bakke. Two fixed point theorems (#1227).
- 2024-02-06. Fredrik Bakke. Rename
(co)prod
to(co)product
(#1017). - 2023-10-16. Fredrik Bakke. The simplex precategory (#845).
- 2023-10-16. Fredrik Bakke and Egbert Rijke. The decidable total order on a standard finite type (#844).
- 2023-06-25. Fredrik Bakke, louismntnu, fernabnor, Egbert Rijke and Julian KG. Posets are categories, and refactor binary relations (#665).